
Interactive Generation of Path-Traced Lightmaps

Thomas Roughton

A thesis

submitted to Victoria University of Wellington

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Graphics

Victoria University of Wellington

2019

©2019 Thomas Roughton

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.

Abstract

Indirect illumination is an important part of realistic images, and accurately simulating

the complex effects of indirect illumination in real-time applications has long been a chal-

lenge for the industry. One popular approach is to use offline precomputed solutions such

as lightmaps (textures containing the precomputed lighting in a scene) to efficiently approx-

imate these effects. Unfortunately, these offline solutions have historically enforced long

iteration times that come at a cost to artist productivity. These solutions have additionally

either supported only the low-frequency diffuse component of indirect lighting, yielding

poor visual results for glossy or metallic materials, or have used overly expensive approx-

imations.

In recent years, the state of the art lightmap precomputation pipeline has shifted to

using highly vectorised path tracing, often on GPU hardware, to compute the indirect il-

lumination effects. The use of path tracing enables progressive rendering, wherein an ap-

proximation to the full solution is found and then refined as opposed to solving for the

final result in a single step. Progressive rendering through path tracing thereby helps to

provide rapid iteration for artists.

This thesis describes a system that can progressively path-trace indirect illumination

lightmapson theGPU.Contributing to this system, it introduces anewgather-basedmethod

for sample accumulation, enhances algorithms from prior work, and presents a range of

encoding methods, including a novel progressive method for non-negative least-squares

encoding of spherical basis functions.

In addition, it presents a novel, efficient solution for high-quality precomputed diffuse

and low-frequency specular indirect illumination that extends the Ambient Dice family of

spherical basis functions. This solution provides comparable or better specular recon-

struction to prior work at lower runtime cost and has potential for widespread use in re-

al-time applications.

Acknowledgments

Thank you to my supervisors, Taehyun Rhee and Andrew Chalmers.

Thank you also to Peter-Pike Sloan for his generous help in a number of email conver-

sations around spherical basis functions, to Michał Iwanicki for his help in implementing

the Ambient Dice basis, and to Matt Pettineo for his implementation of my progressive

least-squares algorithm within The Baking Lab and his invaluable blog series on spherical

Gaussians.

The codebase for the core implementation framework was developed in conjunction

with Joseph Bennett. Joseph has also been the source of a great deal of interesting con-

versation over my time at university and an invaluable sounding board for ideas; it would

have been hard to stay motivated for this long without him.

Finally, thank you tomyparents, extended family, and friends for their support through-

out my time at university.

Contents

1 Introduction 15

1.1 Thesis Aims and Contributions . 17

1.2 Thesis Structure . 19

1.3 Test Hardware . 21

2 Background 23

2.1 An Overview of Lightmapping . 23

2.1.1 Irradiance Volumes . 28

2.2 Augmenting Lightmaps . 28

2.3 Precomputing the Indirect Lighting . 32

2.3.1 Recursive Rasterisation . 33

2.3.2 Radiosity . 34

2.3.3 Path Tracing . 35

2.4 GPU Path Tracing . 36

2.4.1 Adapting Path Tracing to the GPU . 39

2.4.2 Wavefront Path Tracing . 40

2.5 GPU Radix Sort . 42

3 Architecture of the Lightmap Renderer 45

3.1 The Path Tracing Framework . 45

3.2 Gather-Based Sample Accumulation . 47

3.2.1 Offset Buffer Generation . 49

3.2.2 Gather-Based Accumulation with Variable Paths per Pixel 53

3.3 Adaptive Rendering . 55

3.4 Lightmap Path Tracing . 56

3

3.4.1 Interactive Lightmap Path Tracing . 59

3.4.2 Camera-Based Lightmap Sampling . 60

4 Lightmap Parameterisation 65

4.1 Packing the Lightmaps . 65

4.1.1 BitImage . 68

4.1.2 Rasterising the Charts . 69

4.1.3 Inserting the Charts . 70

4.2 Packing the Data for the GPU . 72

4.3 Decoding the Data on the GPU . 73

5 Accelerating the Path Tracer: Improving Coherence 77

5.1 Stream Compaction . 77

5.2 Tile-Based Indexing . 80

5.3 GPU Radix Sort with SIMD Operations . 83

5.4 Ray Direction Sorting . 85

6 Accelerating the Path Tracer: Reducing Variance 89

6.1 Next Event Estimation . 89

6.2 Progressive Sample Sequences . 91

6.3 Importance Sampling . 94

6.3.1 Importance Sampling Materials . 95

6.3.2 Importance Sampling Lighting . 96

6.4 Biased Light Sampling . 99

6.4.1 Irradiance Caching . 100

7 Spherical Basis Functions 103

7.1 Linear Bases . 103

7.2 Least-Squares Encoding of Spherical Basis Functions 106

7.2.1 Spherical Basis Functions Over the Hemisphere 110

7.3 Progressive Least-Squares Encoding . 111

7.3.1 Notes and Limitations . 115

7.3.2 Implementation . 118

7.3.3 Results . 119

7.4 Encoding BRDF-Weighted Spherical Basis Functions from Radiance Signals 122

8 Families of Spherical Basis Functions 127

8.1 Spherical Harmonics . 127

8.2 Spherical Gaussians . 128

8.3 Ambient Dice . 130

8.3.1 Ambient Dice's Cosine-Lobe Basis on the Hemisphere 131

8.3.2 Relationship to Spherical Gaussians . 132

8.4 Evaluating BRDFs from Radiance Ambient Dice 133

8.4.1 Diffuse Reconstruction from Cosine-Lobe Ambient Dice 134

8.4.2 Specular Reconstruction from Cosine-Lobe Ambient Dice 137

8.4.3 Potential Uses . 145

9 Conclusion 153

9.1 Limitations and Future Work . 154

Appendices 157

A Validation and PBRT Compatibility 159

B Implementation Frameworks 163

B.1 LlamaEngine . 163

B.2 RadeonRays and RadeonProRender . 164

B.2.1 RadeonRays and Render Graph Resources 166

B.3 Metal Performance Shaders . 167

B.4 Resource Binding . 170

C ImageGallery: ReconstructionError fromAmbientDice vs. SphericalGaus-

sians 173

D Image Gallery: Test Scenes 181

List of Figures

1.1 Indirect lighting from lightmaps in the Sponza Atrium scene 16

2.1 The diffuse Baking Lab scene and its corresponding scalar indirect illumi-

nation lightmap . 25

2.2 Lightmaps in id Software's 1996 game Quake 27

2.3 Irradiance volumes . 29

2.4 A path-traced scene featuring complex reflection, refraction, and area light

effects, rendered on the GPU in LlamaEngine 37

3.1 Filtered sample accumulation in LlamaEngine 48

3.2 Variance-Based Adaptive Sampling . 57

3.3 Camera-based sampling for lightmap baking 62

3.4 Camera-based sampling convergence rates . 63

4.1 The parameterised lightmap for Sponza Atrium 66

5.1 Tile-based indexing . 80

5.2 SIMD Parallel Inclusive Prefix Sum: four threads 85

5.3 SIMD Parallel Inclusive Prefix Sum: eight threads with values 85

6.1 Comparison of sample sequences for sampling a camera-generated sample

domain . 93

6.2 Evaluating path traced material layers separately vs. simultaneously 97

6.3 Irradiance Caching . 102

7.1 Linear basis approximation of the Wells HDR environment map 104

7.2 Component basis functions for the approximation of the Wells HDR envi-

ronment map . 105

7

7.3 Spherical basis functions constrained to the hemisphere 109

7.4 Indirect specular from spherical Gaussian lightmaps. 111

7.5 Comparison of the naïve projection, least-squares, and progressive least-

-squares encoding methods . 119

7.6 Progressive least-squares encoding with correlated vs. decorrelated samples 120

7.7 Progressive non-negative least-squares encoding 120

7.8 Convergence rate of progressive least-squares encoding 121

7.9 Comparison of Ambient Dice SRBF Lambertian irradiance representations

on the Wells HDR environment map . 125

8.1 Graph of spherical Gaussian fit to an Ambient Dice cosine lobe 133

8.2 Graphof thepolynomial approximation to irradiance from theAmbientDice

SRBF . 137

8.3 Specular response from the Ambient Dice SRBF for single-scattering GGX . 138

8.4 Absolute difference between the ground truth and the 2D LUT approxima-

tion for the specular response from the Ambient Dice SRBF 139

8.5 The Ambient Dice DFG texture for single-scattering GGX. NdotV increases

to the right and α increases downwards. 141

8.6 Indirect lighting from baked lightmaps in Sponza Atriumwith only single-s-

cattering GGXmaterials . 147

8.7 Comparison of various real-time indirect lighting techniques 148

8.8 Comparison of various real-time indirect lighting techniques: absolute dif-

ference from path-traced reference . 150

A.1 'bathroom' in PBRT and in LlamaEngine . 161

A.2 Comparison of a single-bounce path-traced image with a render from the

rasteriser . 162

B.1 The LlamaEngine editor . 164

C.1 Ambient Dice vs. Spherical Gaussian Reconstruction on 'Pisa' 175

C.2 Ambient Dice vs. Spherical Gaussian Reconstruction on 'Ennis' 175

C.3 Ambient Dice vs. Spherical Gaussian Reconstruction on 'Grace' 176

C.4 Ambient Dice vs. Spherical Gaussian Reconstruction on 'Uffizi' 176

C.5 Ambient Dice vs. Spherical Gaussian Reconstruction on 'Wells' 177

C.6 Comparison graphs of reconstruction error for spherical harmonics, spher-

ical Gaussians, and cosine-lobe Ambient Dice 178

D.1 'Contemporary Bathroom' (Mareck) [40] . 181

D.2 'Crown' (Lubich) [40] . 182

D.3 'The Wooden Staircase' (Wig42) [5, 59] . 183

D.4 'Modern Hall' (NewSee2l035) [5, 59] . 184

D.5 'Sponza Atrium' (Meinl, McGuire) [5] . 185

List of Tables

3.1 Frame timings for filtered accumulation . 49

4.1 Timing for packing lightmap charts for Sponza Atrium 70

5.1 Timing per frame for path tracing with and without indirect buffers 79

5.2 Timing per frame for camera-based path tracing of Sponza Atrium 83

5.3 Timing for performing GPU radix sort on arrays of 32-bit numbers 84

5.4 Frame timing breakdown for 'Modern Hall' . 87

8.1 Runtime overhead of indirect specular lightmaps 146

B.1 Frame timing comparisonbetweenRadeonRays andMetal PerformanceShaders168

11

Listings

3.1 Offset Buffer Generation . 51

3.2 Accumulation by Offset Buffer Sampling . 54

4.1 BitImage Insertion Testing and Insertion . 70

4.2 Lightmap Sample Information Decoding . 75

7.1 Progressive Least-Squares Encoding . 117

8.1 Ambient Dice Specular Fit . 142

8.2 Ambient Dice Lookup Texture Generation . 143

B.1 Metal Shading Language Mesh Description . 171

13

Chapter 1

Introduction

Lightmapping is a long-used technique for cachingprecomputed indirect lighting, enabling

global illumination effects in real-time applications with static geometry and fixed lighting

(Figure 1.1). Lightmaps scale well across a wide range of hardware, making them useful for

everything frommobile games to high-end PC applications.

Despite this, lightmaps have long faced significant workflow and quality limitations.

The generation process for lightmaps (known as 'baking' the lightmaps) generally takes on

the order of minutes to hours [1] and is performed in a non-interactive manner, hindering

artist productivity as they wait for the result of their work, and the resulting lightmaps

poorly represent the glossy specular component of indirect lighting.

Major strides in these areas have beenmade over the past few years. The precomputa-

tion process has been democratised by the use of GPU-based path tracing to precompute

the results, enabled by continuing increases in GPU performance and a focus from hard-

ware vendors on ray-tracing acceleration [2]. Prototype solutions for GPU path-tracing

lightmappers have been presented in prior industry work within the Unity and EA's Frost-

bite engines [3, 4], significantly reducing the friction ofworkingwith lightmaps by enabling

artists to interactively preview the lightmapped results of their 3D scenes.

Unfortunately, building a GPU path-tracer is non-trivial and a path-tracing lightmap-

per even more so, and the public presentations of prior works have contained only fairly

high-level details. While more detailed resources have begun to emerge near to the time

of publication [1], comprehensive system overviews remain lacking.

For reconstructing specular BRDFs, prior coarse approximations such as an Ambient

and Highlight Direction term [6, 7] or extracting the primary specular direction from L1

15

Figure 1.1: Indirect lighting from lightmaps in the Sponza Atrium scene [5].

(a)Real-time render using indirect illumination from a baked lightmap. The lightmap uses the
Ambient Dice cosine-lobe variant for both diffuse and specular (Section 8.3).

(b) Path traced reference.

spherical harmonics [8] have been supplemented with new sets of spherical basis func-

tions; notably, spherical Gaussians [9] were applied to the context of lightmapping by

Pettineo and Neubelt [10] in 2015. While spherical Gaussians enable reasonably accurate

low-frequency specular lighting reconstruction, they are expensive to evaluate at runtime

and are difficult to encode during precomputation.

1.1 Thesis Aims and Contributions

In this thesis, I have three key aims:

• To detail a comprehensive architecture for building a progressive path-tracing GPU

lightmapper, which by its nature enables fast, iterative artist workflows.

• To accelerate the lightmapper, delivering high quality previews and results in less

time.

• To improve the visual quality of the produced lightmaps, focusing particularly on

specular reconstruction.

These three core aims – informally to make it work, to make it fast, and to make it look

good – are achieved by way of many independent contributions, some of which advance

multiple of the goals; a fast system is not independent of the architecture of the system,

and likewise the architecture must be designed for the visuals it is intended to produce.

However, if each contribution is categorised by its primary goal:

• Pursuing the goal of detailing a comprehensive architecture, this thesis:

– Summarises the underlying split-kernel architecture [11] that is state-of-the-art

for performant GPU path tracers.

– Describeshowadaptive renderingmaybe implemented in the context of a split-k-

ernel GPU path tracer and how those adaptive rendering capabilities may be

utilised in a lightmap path tracer.

– Provides a detailed overview of the lightmap path tracing renderer, which is re-

sponsible for computing indirect lighting and encoding it into a lightmap tex-

ture.

– Provides in-depth implementation details for a prior algorithm [8] for packing

parameterised meshes into a lightmap atlas.

– Describes how the result of the parameterisation algorithmmay be compressed

and used to generate samples on the GPU.

– Provides a detailed derivation of the mathematical formalism behind spherical

basis functions.

• Pursuing the goal of accelerating the lightmapping process, this thesis:

– Extends the adaptive rendering techniques to perform camera-based lightmap

sampling where lightmap samples are prioritised on the user's current view,

providing faster visualisation.

– Details how SIMD instructions recently exposed on GPUs can be used to accel-

erate the implementation of a GPU-based radix sort, which in turn can be used

to accelerate other parts of the path tracing process.

– Evaluates the importance of ray direction sorting to provide coherentworkloads

for GPU path tracing.

– Describes how a tile-based rather than row-based indexing scheme can pro-

vide performance gains for path tracing, and gives equations mapping between

tile-based and row-based indexing.

– Overviews performance-quality tradeoffs for the path tracing estimator enabled

by integration with an existing rasteriser such as biased light sampling and ir-

radiance caching.

• Pursuing the goal of improving the visual quality of the produced lightmaps, this

thesis:

– Details a novel algorithm to efficiently generate a prefix-sum offset buffer that

maps from pixel indices into indices within the paths buffer, enabling gathering

of all paths affecting a given pixel.

– Shows how an offset buffermay be used to perform filtered andmulti-step sam-

ple accumulation, improving image quality and enabling a class of progressive

lightmap encoding techniques not otherwise possible.

– Contributes a novel method for progressive least-squares encoding that sup-

ports approximatenon-negative solves, enabling awide rangeof arbitrary spher-

ical basis functions for use in progressive lightmap encoding.

– Presents a novel method for unified diffuse and specular reconstruction de-

rived from the Ambient Dice [12] family of basis functions, achieving compara-

ble specular and improved diffuse reconstruction at as little as half the runtime

cost.

1.2 Thesis Structure

This thesis is divided into three main sections, loosely corresponding to the aims out-

linedabove. The first section, comprisingofChapters3 and4, focusesonhow the lightmap-

per canbemade to function; it covers the core components necessary tobuild aGPU-based

path tracing lightmapper and introduces a framework into which later techniques can be

composed. The second section, comprising of Chapters 5 and 6, is focused on how the

lightmapper can be made to converge quickly and provide fast iteration. The final sec-

tion, comprising of Chapters 7 and 8, looks at how lighting information can be stored in

a manner that allows arbitrary normal directions and reconstruction of both diffuse and

specular lighting, producing more visually appealing final results.

Additionally, background material is contained in Chapter 2, and the appendices pro-

vide extra system details. The sum total of this material is a system that can produce and

render lightmapped indirect diffuse and specular lighting as seen in Figure 1.1.

Many independent techniques will be evaluated over the course of this thesis, and as

such results (including performance statistics, images, and error metrics) will either be

contained inline in the chapters or can be found in the appendices. It is recommended

that images be viewed in digital format for best resolution and colour accuracy.

To overview the contents of each chapter in more depth:

• Chapter 2 provides a background to this work. It includes a general introduction

to lightmaps, summarises the related work, discusses different possible techniques

for lightmap baking, and justifies the choice of path tracing with reference to the

state-of-the-art in GPU hardware and path tracing research. Additionally, it provides

an introduction to GPU SIMD architectures, summarises wavefront path tracing as a

method of formulating path tracing for the GPU, and outlines GPU radix sort.

• Chapter 3 provides a basic framework for the lightmap path tracing renderer. It

then introduces a filtered accumulation method, an adaptive rendering method, al-

terations to support lightmap baking, and finally a method of implementing camer-

a-based lightmap sampling.

• Chapter 4 describes practical considerations of the method used within EA's Frost-

bite [8] for parameterising geometry into lightmaps, including performance met-

rics for different implementations and a simple means of compression necessary for

copying the parameterisation for use in GPU path tracing.

• Chapter 5 describes methods of accelerating the path tracer by improving coher-

ence. In particular, it discusses how stream compaction can be integrated into the

path tracing framework, describes how GPU SIMD operations can accelerate radix

sort on the GPU, evaluates ray direction sorting as an acceleration method, and in-

troduces a tile-based indexing method that helps to achieve coherence by grouping

similar rays.

• Chapter 6 describes methods of accelerating the path tracer by reducing variance.

It overviews next event estimation, progressive sample sequences, and importance

sampling as methods of variance reduction. It also discusses how biased light sam-

pling or irradiance caching can more quickly produce an image at the cost of bias.

• Chapter 7 delves into spherical basis functions as a method for encoding radiance

or irradiance, providing the mathematical formalism for least-squares encoding of

any general set of linear basis functions. That formalism is then extended with a

novelmethod for progressive least-squares and non-negative least-squares encoding

of spherical basis functions in an efficient and simple-to-implement manner.

• Chapter 8 overviews the spherical harmonic, spherical Gaussian, and Ambient Dice

families of basis functions. For Ambient Dice, the cosine-lobe variant is extended

to provide diffuse and specular reconstruction from encoded radiance lobes. This

reconstruction is then compared with spherical Gaussians and spherical harmon-

ics, demonstrating its applicability as an efficient encoding format for low-frequency

lighting.

Appendix A briefly discusses how the path tracer was validated against the rasteriser

and the open source PBRT renderer [13].

Appendix B gives an overview of the custom 3D engine LlamaEngine and the Swift-

FrameGraph rendering framework [14], which serve as the base implementation frame-

works for this thesis. It also includes technical details pertaining to integrating theRadeon-

Rays [15] andMetal Performance Shaders ray-tracing frameworks into the pre-existing en-

gine.

Appendix C provides a detailed image comparison of the Ambient Dice and spherical

Gaussian encoding techniques and reconstruction quality from each on a range of envi-

ronment maps.

Appendix D provides images of a number of test scenes referenced within this thesis.

1.3 Test Hardware

Since results and performance numbers are interspersed throughout each chapter, it

would be cumbersome to restate the test hardware alongside every result. Therefore, un-

less otherwise stated, all performance numbers in this thesis are derived from a computer

with the following specifications:

• Operating System: macOS 10.14 Mojave

• CPU: Intel Xeon W 2150-B (3.0 GHz base clock, 4.5GHz Turbo Boost, 10 physical

cores, 20 logical cores)

• GPU:AMDRadeonProVega64 (11TFlops at single precision, 16GBHBM2at 1.57Gbps)

• RAM: 64 GB 2666 MHz DDR4

This hardware serves as a reasonable baseline for a high-end artist workstation. In

particular, the GPU architecture (AMD's Vega) is expected to be highly similar to the AMD

architecture in next generation consoles [16], and thus its performance characteristics are

a good indicator for future mainstream hardware.

Chapter 2

Background

2.1 An Overview of Lightmapping

Wehave an innate understanding of how light andmaterials interact to shade theworld

that we see. We knowwhere the sun is in the sky fromwhere a shadow lies on the ground;

we can tell whether a surface is soft or hard or whether it will be cool or warm to the

touch on a particular day from only a glance. We understand how light bounces around

spaces: that a white wall will lighten a room, a black wall will darken it, and an orange

wall will bathe everything in a warm hue. The field of computer graphics has another un-

derstanding: the set of phenomena underlying these interactions are incredibly complex,

multifaceted, and therefore difficult to accurately and efficiently simulate.

In interactivemedia, we often want to recreate these effects so that the people interact-

ingwith thesemedia feel immersed. The realismwe can achieve in real-time has increased

over time due to advances in both computing power and research, but even today there are

a number of phenomena that we are unable to accurately reproduce or that are too expen-

sive to perform on most consumer hardware.

Real-time media imposes a very restrictive time budget, wherein a new image must

usually be rendered in between around 16 and 33 milliseconds each frame. Thankfully,

there are far looser time restrictions in the production stages of these media, and we can

use that time to precompute and cache many of the calculations necessary. For example,

as one solution, we can simply look up the lighting for a scene in a precomputed table or

texture. If the camera position is fixed, this simply amounts to rendering a movie ahead-

-of-time; however, most real-time applications target interactivity, where the user is able

23

to navigate the world of their own accord.

A straightforward method to achieve this is to render out a series of pictures or ani-

mations of the scene from different perspectives. This was a commonly used technique

in early point-and-click games; a particularly prominent example is the 1993 game Myst

[17], which allowed players to explore a 3D world from a series of predefined viewpoints.

Today, however, users expect to be able to move and look around freely. That presents a

different challenge: caching the lighting in a view-independentmanner.

One method of doing so is called lightmapping. A lightmap is a texture that can be

queried for the incident irradiance at points on surfaceswithin a scene. Mapping from loca-

tions on surfaces in the scene to locations within the lightmap texture requires a lightmap

parameterisation for the scene. If we assume that each surface is comprised of a number

of triangles (as is commonly the case), the lightmap parameterisation defines the texture

coordinate (a two-dimensional value also known as a UV) corresponding to each vertex of

each triangle. When we render each triangle to the screen, we can look up the texture co-

ordinates for each of its vertices, blend between them depending on where we are on the

triangle, and then sample the lightmap to get the irradiance at that location.1 An example

of a scene lit using a lightmap and its corresponding lightmap texture is given in Figure 2.1.

Note that lightmaps cannot store the irradiance at every point: irradiance is continu-

ous over a surface, and textures are discrete, storing data within each texel. However, by

blending between neighbouring texels we can get an approximation for the irradiance at

every point, with the quality of the approximation being determined by the footprint of

each lightmap texel on the screen; this in turn is determined by the density of the texels

(i.e. the ratio of texels toworld-space units), the viewing perspective, and the distance from

the viewer to the object. If we assume that the outgoing radiance (the light from a point

on a surface in a particular direction) is the same over all directions on a hemisphere – an

assumption that holds true for a particular model of material reflectance called Lamber-

tian reflectance – an infinitely high resolution lightmap could give us an exact view of the

lighting within a scene from any arbitrary viewpoint.

In reality, lightmaps are of limited resolution; in fact, in early uses you might have had

only one lightmap texel for a one-metre square area [19]. Wewould prefer to have detailed

1 An alternative approach to lightmapping is to store the radiance data per-vertex directly in the mesh. This
presents alternative trade-offs: it bypasses the need for a unique parameterisation of the scene, but does
tie the number of radiance samples to the triangle density of the mesh and prohibit instancing.

Figure 2.1: ThediffuseBakingLab scene and its corresponding scalar indirect illumination
lightmap. [18]

colour textures for different objects within the scene; a single colour for each metre is in

most contexts highly undesirable. Fortunately, we can begin to separate out information

from the lightmap. For example, diffuse illumination using Lambertian reflectance is de-

fined as:

I =
ρ

π

󰁝

Ω

R(ω) · (ω · 󰂓n) dω (2.1)

where I is the outgoing irradiance, ρ is the albedo (diffuse colour), 󰂓n is the surface nor-

mal, andR(ω) gives the incoming radiance in directionω. Since the albedo is separate from

the radiance integral, we can store them separately; for example, we can choose to store

only the incident radiance over the hemisphere in the lightmap and then later multiply by

the surface albedo. Using this approach, we can combine highly detailed albedo textures

with low-frequency lightmaps to achieve realistic results.

This general method was first used by id Software's 1996 game Quake [20] (Figure 2.2)

for all lighting information and works fairly well. Hardware and rendering have signifi-

cantly advanced in the years since, however; we can now trivially evaluate many different

light types in real-time, and we nowmake use of many different physically-based material

reflectancemodels.2 This ability to evaluate complex lighting in real-timewould seemingly

obviate the need for lightmaps.

There remain, however, a number of phenomena that are prohibitively expensive to

accurately simulate in real-time. The most prominent of these is global, or indirect, illu-

mination. Global illumination accounts for the paths light takes from surface to surface;

the aforementioned warm glow from an orange wall is one example of this, wherein light

from a source such as the sun hits the wall and then scatters light out into the remainder

of the room; traditional lighting, conversely, only accounts for the first bounce of a light

onto scene surfaces.

There are many techniques to approximate indirect illumination in real-time applica-

tions, varying in accuracy and performance profile. Today, lightmaps remain one of the

most inexpensive options, providing high quality at low computational cost; for diffuse ir-

radiance, this cost is a single texture lookup per pixel. To store indirect illumination in a

lightmap, each texel needs to contain all of the incident radiance at a point that did not di-

2 Material reflectance models are often abbreviated as BRDFs, or bidirectional reflectance distribution func-
tions. BRDFs are the subset of BSDFs, or bidirectional scattering distribution functions, that do not include
transmission.

Figure 2.2: Lightmaps in id Software's 1996 gameQuake [20]. Image credit Bush 2015 [21].

(a) Textures only (b) Point-sampled lightmap

(c) Bilinearly-sampled lightmap (d) Lit scene

rectly come from a direct light source – in other words, it should contain all of the radiance

that arrived at the surface by being bounced off another surface.

Indirect illumination lightmaps are used inmanymodern applications. They are partic-

ularly invaluablewhen targeting high frame-rates (such as competitive action games or vir-

tual reality) or low-end or power-constrained hardware (such as smartphones or tablets),

but are also broadly useful in providing a complex effect in an inexpensive way; many

high-end console games targeting moderate framerates have also incorporated lightmaps

[22, 23].

2.1.1 Irradiance Volumes

There are other noteworthy methods of storing pre-computed lighting than textures

mapped to scene surfaces. One such method is the use of Irradiance Volumes (Figure 2.3)

[24] (introduced to the context of real-time applications by Tatarchuk in 2005 [25]): 3D

data structures that can be queried for the irradiance (or some other precomputed lighting

information) at continuous locations in 3D space. A simple representation of an irradiance

volume might be a grid, where the lighting can be interpolated between cells in that grid.

Irradiance volumes are useful in conjunction with lightmaps due to their ability to pro-

vide approximate indirect illumination for dynamicobjects (whosepositionwasnot known

at lightmap generation time) and volumetric materials.

Many of the same considerations for lightmaps apply to irradiance volumes, and the

process for generating them is much the same. There are two main distinctions: one, a

lightmap stores lighting information in a hemisphere, whereas an irradiance volume stores

lighting in all directions, and two; the parameterisation of an irradiance volume is usually

much simpler, often corresponding to 3D world-space positions. With the exception of

those two specific areas, however, almost all of the techniques and methods discussed in

this thesis are equally applicable to both lightmaps and irradiance volumes.

2.2 Augmenting Lightmaps

Wecan storemore than simple colour values – such as the cosine-weighted Lambertian

irradiance from Equation 2.1 – within lightmap textures. There are two main reasons why

we would want to do so: normal mapping and non-Lambertian BRDFs.

Figure 2.3: An irradiance volume. Each sphere shows the incident lighting at a particular
point in the scene. Image credit Greger 1996 [24] (Figure 4.16).

In rendering, we often want to give the illusion that a mesh has more detail than it ac-

tually has, and one method to do so is called normal mapping (Cohen et. al. 1998) [26].

Normal mapping adjusts, per-pixel, the interpolated shading normal based on a high-res-

olution texture; it is what allows a two-triangle plane to look convincingly like a brick wall.

It presents a problem for irradiance caching, however; when we precompute, or bake, a

lightmap, we do so assuming a particular surface normal. If that surface normal differs

at runtime (whether due to high-detail normal maps or the use of lower-resolution proxy

geometry for baking) then the lighting information will be incorrect.

Non-LambertianBRDFspresent another challenge: view-dependency. In general, BRDFs

are parameterised by both the incoming radiance direction (as in Lambertian reflectance)

andby theoutgoing viewdirection. This iswhatmakesmaterials appear reflective or shiny;

the lighting changes as you move around the object. All real-life materials have some de-

gree of view-dependency, with the extent depending upon the material. If we assume that

the outgoing radiance is constant with respect to viewing angle we heavily limit the types

of materials and scenes we can recreate.

Fortunately, there are ways of storing the radiance that allow us to retain some direc-

tionality. For example, spherical harmonics (Section 8.1), which were first introduced into

the context of rendering by Ramamoorthi and Hanrahan in 2001 [27], are a method of rep-

resenting spherical functions in frequency space. Given a spherical harmonic function

representation of radiance, it is possible to query that function for the radiance in any par-

ticular direction.

Conveniently, spherical harmonics also allow us to analytically and cheaply compute

the Lambertian irradiance in any direction: the integral in Equation 2.1 becomes a simple

dot product (Section 7.4). When combined with normal maps, the spherical harmonic can

be evaluated in thedirection from thenormalmap to achieve indirect lighting that interacts

with the bumps in the surface.

Irradiance from diffuse materials is inherently low-frequency – the material 'blurs' to-

gether radiance from over a hemisphere – which means that in frequency space we only

need to consider the first few spherical harmonic bands.3 For lightmaps, only the L0 and

L1 bands (comprising of four coefficients per colour channel in total) are commonly used

[8].

Representing indirect specular – the high-detail reflections that shift based on the view-

ing direction – is substantially trickier. The core issue is that specularity for smooth ma-

terials is inherently high-frequency; given a mirror (a perfectly smooth, purely specular

surface), you see the perfect reflection of whatever is in the mirror's reflection direction

relative to your viewing position. If, however, we restrict ourselves to rough materials, we

have some better options.

One approach, used by e.g. EA's Frostbite engine [8], is to treat the spherical harmonic

as a directional or area light. The three coefficients of the L1 band of a spherical harmonic

represent the average direction of the light, and the length of that direction vector indicates

how directional the light is; larger L1 band coefficients mean that the light is fairly focused

rather than spread. This can then be used to adjust the intensity of the specular highlight.

While often visually plausible, this is also very inaccurate, and can have distracting arte-

facts when the average direction varies over a surface. Consider the case of a glossy plane

with an area light source at its top and right; youwould expect two specular highlights, but

instead the specular highlight would appear to turn a corner on the surface as the primary

direction transitioned from one light to the other.

A similar approach is employed by Sloan and Silvennoinen (2018) [6], who propose

solve and compression methods for the Ambient and Highlight Direction (AHD) encod-

3 Spherical harmonics consist of a series of bands, each ofwhich represents an increasingly higher-frequency
component of the signal.

ing method, which was first applied in id Software's Quake 3 (1999) [28] and indepen-

dently extended for use in lightmaps by Lazarov (2011) [29] and Iwanicki (2013) [22]. AHD

is an inexpensive representation analogous to L1 spherical harmonics but with a different

method of evaluation, and is better suited to lightmaps than spherical harmonics due to

its restriction to the hemisphere; since all lighting information for lightmaps is contained

within the hemisphere surrounding the surface normal, encodingmethods such as spher-

ical harmonics which encode spherical information are comparatively wasteful. When

performance is the top priority, AHD currently presents the best relative quality [6].

Another alternative for specular BRDFs, introduced by Chen and Liu at SIGGRAPH

2008 [7] and used in Bungie's 2007 game Halo 3, is to project the BRDF onto a spheri-

cal harmonic basis and then integrate it with the indirect radiance. In frequency space,

this integration can be cheaply computed as a vector dot product. Since specular light-

ing is higher frequency than diffuse this requires including the five higher-frequency L2

band spherical harmonic coefficients in the reconstruction, bringing the total number of

coefficients up to nine per colour channel. This approach also necessitates the use of pre-

computed lookup tables for the BRDF coefficients, which in turnmeans that the BRDFs are

restricted to have an isotropic response.4 Real-world materials have anisotropic specular

response: the highlights stretch out at grazing viewing angles.

One option would be to use higher-dimensional lookup tables to enable anisotropic

specular responses. However, that bringsus to a larger issuewith this technique. Low-band

spherical harmonics are simply too low-frequency to accurately represent high-frequency,

high dynamic range indirect information. To achieve higher quality, we need to keep on in-

creasing the amount of data, but the quantities soon become untenable; the L3 band adds

seven coefficients per channel and the L4 band adds another nine. For real-time perfor-

mance, the bandwidth cost imposedby simply fetching all that data per-texel is substantial.

Spherical Gaussians are a more recent alternative that can provide results with diffuse

irradiance reconstruction error up to somewhere between L1 and L2 spherical harmonics.

They were first introduced by Wang et. al. in 2007 [30], and have since been most promi-

nently used in Ready at Dawn's 2015 game The Order: 1886 [31]. Spherical Gaussians are

particularly interesting because of their ability to represent specular light sources, thereby

4Most BRDFs are parameterised by some roughness parameter for each perpendicular tangent direction,
the view direction, and the reflection direction. This is generally too many dimensions to store in a lookup
table; instead, common approximations are to assume that the view direction is aligned to the surface
normal and that the roughness parameter is the same for both tangent directions.

providing a more accurate approximation to indirect specular. This approximation only

works well for rough specular materials, however; highly reflective materials require very

high frequency lighting information, which implies a large number of coefficients and a

storage and bandwidth cost that is usually untenable for real-time applications, regard-

less of encoding format.

Spherical Gaussians are radial basis functions, which, in the context of spherical func-

tions, means the value depends on the angle between some spherical direction and the

query direction. When using linear bases for lighting, each basis function can be treated

as an independent light source and used to evaluate irradiance. If the linear basis is com-

prised of a single type of radial basis function oriented in different directions, the same

equations or fits may be used to evaluate irradiance for each component basis function;

this is an important advantageof radial basis functionsover spherical harmonics, forwhich

each band has a different response and therefore requires different fits or lookup tables.

In Section 8.3, I introduce a newmethod for reconstructing low-frequency specular us-

ing a radial basis function from Sloan and Iwanicki's 2018 paper Ambient Dice [12]. This

method offers comparable specular reconstruction quality and better diffuse reconstruc-

tion than spherical Gaussians at lower computational cost.

2.3 Precomputing the Indirect Lighting

Given that anapplicationwill useprecomputed lighting information stored in lightmaps

or irradiance volumes, the next question is how that lighting information should be pre-

computed. When considering different techniques, wemust have some criteria to evaluate

each by; image quality is one aspect; time to complete the precomputation process is an-

other; but arguably the most important is the time taken before the artists have a preview

of the final result.

Consider an artistworkingona level in a 3Dgame. Theyhave just finishedplacing lights

around the scene, carefully shrouding certain objects – collectables or secrets, perhaps – in

murky darkness while subtly illuminating the path forward for the player to take. Satisfied

with their work, they submit their level to a job queue to bake the indirect lighting.

They return to the level a number of hours later when the bake process is complete.

Aghast, they find that their carefully designed lighting has beenmuddied, and their game-

play cues hidden. Their carefully shadowed corner is now filled out by light bounced off

the brightly lit main path, and that main path is no longer nearly as distinct, the contrast

with the surrounding area lost. Theymake further adjustments to the lights, compensating

for the effects of the indirect lighting output by the bake process, and submit their level to

the queue, preparing to wait a number of hours more with no guarantee of a better result.

The iteration time imposed by this workflow is highly undesirable. As an artist, you

want to be able to quickly preview the results of your changes. The preview does not need

to be production quality – minor visual artefacts are fine – but it does need to give an im-

pression of the entire scene. The goal, therefore, is a workflow where the result is progres-

sively rendered. Ideally, it should also be possible to look around and interact with the scene

while the bake process is ongoing, with changes to either the geometry or lighting restart-

ing the bake process. A progressively rendered, interactive workflow will therefore be our

main criterion as we overview a few possible methods: recursive rasterisation, radiosity,

and path tracing.

2.3.1 Recursive Rasterisation

One candidate technique is called recursive rasterisation [23]. Given an understanding

of a standard rasterisation pipeline, the concept is fairly simple. Firstly, note that sin-

gle-bounce indirect lighting is simply direct lighting as seen by another surface multiplied

by that surface's BRDF; in effect, every illuminated scene surface itself becomes a light

source. Given we have the ability to rasterise the direct lighting in the scene from some

arbitrary viewpoint – the arbitrary viewpoint usually being the main camera – we should

therefore be able to render the scene from the viewpoint of each texel in the lightmap.

That, integrated with the BRDF, then becomes the first-bounce indirect lighting that is

stored in the lightmap.

We can recursively repeat this process to however many bounces is desired, with each

render adding another bounce of light. Note that in the absence of specular light transport

(i.e. with only diffuse BRDFs) and with non-white surface albedos, successive bounces will

contribute progressively smaller fractions to the result, and at some point the difference

will be imperceptible.

Themain benefit of this approach is that it is trivial to implementwithin a standard ras-

teriser; material and lighting models automatically match and are consistent between di-

rect and indirect lighting. However, it has a fewmajor downsides. Firstly, every texel must

be rendered in succession;5 it is an inherently serial process,meaning that each texel's con-

tribution for a particular bounce must be calculated in turn before subsequent texels are

computed. Secondly, we incur a CPU overhead for generating and submitting the draw

calls for each texel. Finally, we are also limited by all the issues of rasterisation: the re-

sult will be limited in resolution and aliased (so crucial high-frequency lighting could be

missed), phenomena such as light refracting through other objects or translucency is dif-

ficult to represent correctly, and the rasterised image will be distorted by the projection

used.6

Recursive rasterisation renders somewhat progressively – texels can be filled in in turn,

and the full lightmapcanbepreviewedafter eachbounce –, but the iteration time is lengthy.

Despite this, it has been successfully used in production for applications such as The Wit-

ness (Thekla Inc., 2016) [23].

2.3.2 Radiosity

Radiosity is a method for computing the diffuse interreflection between surfaces in a

scene. First adapted to the field of computer graphics by Goral et. al in 1984 [33], radiosity

methods involve parameterising the scene into a set of patches (akin to lightmap texels),

computing a visibility factor between each pair of patches, and then solving for the irradi-

ance at each patch by iteratively adding the visibility-factor-weighted irradiance at all other

patches within the scene.

Radiosity produces robust results and is fairly simple. However, it has a fewmajor limi-

tations, evenwithin the constraints of solely diffuse interreflection. One is that every patch

must evaluate the contribution of every other patch (or, at the least, every other mutually

visible patch), which causes the technique to scale poorly with resolution. Another is that

shadowing is poorly resolved with low patch density since lighting is decoupled from vis-

ibility: there is an assumption that incident illumination is constant over a patch, which is

not usually the case.

5 It is possible to render multiple texels at once if multi-view rasterisation is supported in the graphics hard-
ware, depending upon the limits of the hardware and the projection used. In a best-case scenario on current
hardware up to 16 texels could be rendered at once using low-quality paraboloid projection mapping [32].

6 In rasterisation, only linear projections can be used – linear here meaning that every triangle in the source
spacemaps to a plane in the final projected space and cannot bewarped or curved. The projectionwewant
– spherical projection over a hemisphere, where every triangle becomes slightly curved – is nonlinear, and
so will either produce artefacts or must be approximated with perspective frusta such as square frusta on
the faces of a cube.

Themore major issue is that radiosity depends upon the ability to compute the visibil-

ity factors, which in turn relies upon either rasterisation or the ability to trace rays between

the patches.7 This is largely unimportant when radiosity is used for runtime relighting of

a scene: the visibility factors can be precomputed offline and then the radiosity algorithm

can be applied at runtime (with all of its associated costs). However, when all lighting is

precomputed, the same process used to compute the visibility can also be applied itera-

tively or recursively to compute the lighting directly, which reduces the usefulness of the

radiosity algorithm in these scenarios: it is simpler to recursively apply an already-imple-

mented algorithm than to implement a separate method which itself must be iteratively

applied.

2.3.3 Path Tracing

Path tracing is an unbiased, probabilistic method to estimate radiance by casting rays

within a scene. The idea is that we can estimate the radiance or irradiance at any point

within the scene by simulating the paths that light would travel, accounting for how the

light is scattered or absorbed by surfaces and media along the way. In recent years, path

tracing has become the standard for offline rendering; Pixar's RenderMan recently shifted

to path tracing as its primary algorithm [35], and Disney's Hyperion [36], Weta Digital's

Manuka [37], Dreamworks' MoonRay [38], and many other production renderers were de-

signed with path tracing in mind.

Path tracing at its most basic is a very simple algorithm. From the point at which you

wish to estimate the radiance, fire a ray in the direction you are interested in and find

where it intersects with the scene. This ray constitutes the first part of a new path in the

scene, where each path carries some accumulated radiance. At the intersection point,

add any emission from the surface to the accumulated radiance along the path (where

the added radiance is multiplied by the path's throughput). Then, select a new random

direction, multiply the throughput of the path by the surface's BSDF given that outgoing

and incoming direction, and fire a new ray into the scene. This process recurses infinitely

until either the throughput along the path is zero or a ray escapes the scene. By averaging

the radiance accumulated across all paths, the true value of the radiance from the source

point in the target direction can be estimated.
7 To give an example, hemicube rasterisation is often used to compute the radiosity form factor, storing
identifiers for the visible geometry rather than radiance values [34].

This process is an example of Monte Carlo integration [39], wherein an estimate for

the true value of a function is obtained by averaging together multiple samples. Initially,

the estimate will be very noisy; however, as the number of samples increases, the variance

will decrease; taking four times the number of samples will halve the variance. Techniques

such as importance sampling (described in Section 6.3) can be used to improve the conver-

gence rate of the path tracing process; finding methods to improve the convergence rate

for path tracing is an active field of research.

Tousepath tracing inbaking a lightmap, yougenerate pathsoriginating at each lightmap

texel's world space position in a hemisphere around each texel's corresponding surface

normal. The representation of the radiance to be stored in the lightmap varies; in themost

simple scenario, when Lambertian irradiance (a single colour per texel) is being baked into

the lightmap, each path's radiance is added with a weight corresponding to cosine of the

angle between the ray and the surface.

Because path tracing is a progressive process, the result gradually converges as more

samples are taken. This makes it ideal for the use case of lightmap generation: artists can

receive visual feedback on the indirect lighting in their scenes almost immediately, en-

abling a fast iteration time. In addition, path tracing is more flexible than recursive raster-

isation and radiosity, producing accurate results for a range of phenomena that the other

methods can only approximate (Figure 2.4).

2.4 GPU Path Tracing

In recent years there has been an ever-increasing interest in using path tracing, which

has traditionally been implemented on the CPU in a recursive manner, on GPUs. As many

as fourteen years ago, Purcell et. al. hypothesised about thedirection futureprogrammable

graphics hardware (as opposed to the fixed-functionhardwareprevalent at that time)might

take in Ray Tracing on Programmable Graphics Hardware [41]. Although highly hypothetical

at the time, their design ended up being remarkably prescient; in particular, their use of a

multi-pass architecture helps to achieve better performance through coherency.

The first widely-used GPU path tracing framework was NVIDIA's OptiX (Parker et. al.

2010) [42]. OptiX combined prior work on GPU-optimised ray traversal acceleration struc-

tures with a formal API and extensible model, enabling a wide range of algorithms to be

implemented. NVIDIA has continued to extend OptiX over the years, and it today serves

Figure 2.4: A path-traced scene featuring complex reflection, refraction, and area light
effects, rendered on the GPU in LlamaEngine (Appendix B.1). Scene credit Mareck [40].

as one of their three supported APIs for ray tracing on their hardware.

In 2015, AMD first previewed RadeonRays (then AMD FireRays), their OpenCL ray-in-

tersection framework [15], and Radeon ProRender, their OpenCL path tracer, [43] which

have since both been open-sourced. The path tracing systems described in this thesis are

primarily adapted from those open-source codebases.

2018 saw a large increase in industry interest and investment in GPU path tracing.

Firstly, NVIDIA's Turing architecture (branded as NVIDIA RTX) was announced [2], bring-

ing hardware acceleration for ray tracing [44]. API support is provided by Microsoft's new

DirectXRaytracingAPI [45], alongsideOptiX and extensions for theVulkanAPI [46]. Apple

also released their own framework for ray-triangle intersection (much like RadeonRays) at

WWDC 2018 [47].

Specific to the topic of lightmapping, Hillaire described a GPU implementation of the

lightmapper for EA's Frostbite engine on top of DirectX Raytracing at GDC 2018 [4]; simi-

larly, UnityTechnologies integratedAMD'sRadeonRays library into their progressive lightmap-

per [3, 48]. More recently, the integration within Frostbite was described in more detail by

Apers et. al. in Ray Tracing Gems [1], which also holds discussion of a number of other

GPU-based path tracing techniques.

Historically, an issue with path tracing on the GPU has been the low amounts of di-

rectly-addressable memory; complex scenes (and the acceleration structures necessary to

ray-trace those complex scenes) would not fit in video memory. However, recently pro-

fessional GPUs have begun to approach desktop-level quantities of RAM; at the high end,

GPUs such as the Radeon Pro Vega 64 or NVIDIA Quadro RTX 6000 now have upwards of

16GB of attached VRAM.

With the combination of all of these factors, path tracing, and path tracing on the GPU

in particular, becomes increasingly practical. Although GPU-based path tracing is likely

still a number of years in the future for general consumer hardware, it is ideal for profes-

sional and content-creation level solutions such as lightmap generation: the hardware is

now fast enough that the process can occur interactively on user machines and the algo-

rithm itself is significantly simpler or has fewer caveats than other alternatives. As such,

GPU path tracing will be the core of the remainder of this thesis.

2.4.1 Adapting Path Tracing to the GPU

The natural description of how a path tracer works involves depth-first recursion (Sec-

tion 2.3.3). Unfortunately, such recursive algorithms are generally poor fits for GPU hard-

ware. To explain why, we need to introduce a few concepts around how GPUs work. The

exact terminology varies depending on manufacturer and graphics API; in this document,

the conventions followed will be that of Apple's Metal API [49].

At the most fine-grained level we have the concept of a thread. A thread on the GPU

carries out a series of instructions and has access to its own memory. In the algorithm

described above, each thread would operate on a single path.

However, GPUs operate on a SIMD (single instruction, multiple data) programming

model. That means that each thread does not operate independently. Instead, threads

within groups called SIMD groups operate in lockstep, all executing the same instruction

on independent data. This has important implications: any divergence in the instructions

each thread executes necessitates the instructions executed by any thread to be executed

by every thread.

For example, in a path tracer somepathsmay terminate before others, whether because

a ray escaped and hit the skybox or because a path was probabilistically terminated by

Russian roulette.8 Ideally, the threads operating on those terminated paths would be able

to begin a newpath tomaximise throughput; however, in a SIMDcontext, those terminated

paths are forced to continue executing until the paths for all of the threadswithin the SIMD

group have been terminated.

There can be evenmore severe consequences if the threads branch and diverge in such

a way that every thread has a separate set of instructions to execute. Consider a branch-

ing if statement that checks the thread's index within the SIMD group: if the body of each

if statement contained a set of separate instructions then the hardware would need to

execute the body of every if statement for every thread, thus effectively making the code

serial. This type of scenario is entirely possible in real use cases: if every path were to hit

a different material in one bounce, for example, and each material required different in-

structions to evaluate it, the effect is as if one thread evaluated everymaterial and all other

threads did nothing. To provide some context, SIMD groups are 64 threads wide in AMD's

8Russian roulette is a method that probabilistically terminates active paths and increases the throughput of
survivors to compensate and keep an unbiased result. It can reduce the work done (since there are fewer
active paths at each bounce) at the cost of increased variance.

GCN architecture [50]; this type of divergence would therefore yield a 64× slowdown.

SIMD configurations are primarily used because they are highly efficient to implement

in hardware. In addition, they also carry the advantage of being able to efficiently share

data between threads. Any thread in a SIMD group can retrieve the value of any other

thread within the same group, which can be useful in algorithms such as parallel reduc-

tion. However, threads within a SIMD group cannot generally synchronise with threads in

a different SIMD group except through order-independent atomic operations or by using

multiple dispatch calls. This can be fairly limiting, since the SIMD group width is hard-

ware-determined.

To alleviate this, SIMD groups are contained within larger groups called threadgroups.

A threadgroup is a group of SIMD groups that can synchronise between each other, for

example by copying data to local threadgroup memory and then yielding so that a differ-

ent SIMD group can execute. There can be at most around 16 or 32 SIMD groups within

a threadgroup on AMD's architecture [50], enabling up to 2048 threads to synchronise

between each other. Note that there are trade-offs for having large threadgroups, since

every thread within a threadgroup must keep its data (e.g. local variables on the stack) in

memory at the same time. If there are fewer threads, that means each thread has access to

more high-speed threadgroup memory; if there are many threads, local variables can end

up spilling out to the much slower device memory [51].

Threadgroups exist within a grid, which can be one-, two-, or three-dimensional. There

is a set number of threadgroups within each dispatch call 9, where the number can either

be specified directly by the CPU or stored indirectly in a GPU buffer. Threadgroups cannot

synchronise with each other within a dispatch call; instead, they must write out interme-

diate results to device memory for those results to be processed in a separate dispatch.

2.4.2 Wavefront Path Tracing

In 2013, Laine et al. introduced wavefront path tracing in Megakernels Considered Harm-

ful: Wavefront Path Tracing [11] ('wavefront' being NVIDIA's term for a SIMD group) as a

solution to the issues inherent in a depth-first recursive path tracer on the GPU. The core

idea is that if the path tracing algorithm is reformulated in a breadth-first manner, the

9A dispatch call is an invocation of a kernel to be executed on the GPU; to perform a dispatch, the CPU
specifies a GPU program, binds parameters for that program, and then dispatches a certain number of
threadgroups to execute that program.

algorithm can then be modularised into multiple, specialised kernels, with potential sort-

ing and compaction steps in between to maximise coherence. Although there are usually

differences in implementation between different GPU path tracers, the core structure gen-

erally follows the template set out by Laine et. al.

Their approach builds upon earlier methods such as path regeneration, first proposed

in 2010 by Novák et al. [52]. Path regeneration attempts to maximise the utilisation within

SIMD groups by generating new paths to replace terminated paths within each thread-

group. Path regeneration does not address divergent control flow within a SIMD group

(e.g. with varying materials or differing depths within the ray traversal data structure) but

does ensure that every thread is active and performing useful work.

An alternative approach, and the one primarily used by Laine et. al., is stream com-

paction, first introduced in this context by Wald in 2011 [53]. In short, the buffer of paths

is filtered to only include those paths which are active; more concretely, the result of the

stream compaction is a buffer containing the indices of the active paths, along with the ac-

tive path count. In subsequent kernels, each thread either fetches a path using the active

indices as an index buffer or, if the thread index within the grid is greater than or equal to

the path count, exits early. Stream compaction preserves ordering and therefore coher-

ence between neighbouring paths.

InMegakernels ConsideredHarmful, Laine et. al. alsomake heavy use of sorting, focusing

particularly on materials. Complex BSDFs can be expensive to evaluate; by sorting the ray

hits by their materials one can evaluate each material only for the relevant paths, keeping

the workload coherent. The decision of whether to split into separate kernels for materi-

als must be made on a case-by-case basis, since there is also an overhead for storing and

retrieving the path state in device memory. Laine et. al. found it to be worthwhile for

their materials, but decided not to split up the light sampling for different light types into

separate kernels; “Light sources that are complex enough to warrant having an individual

stage are not as common as complex materials.”

In addition to achieving coherence within threadgroups, there is another benefit to

havingmany smaller kernels rather than a single large kernel. Recall that having toomany

threads in a threadgroup (and therefore too much memory usage in a threadgroup) could

cause stack variables to spill from local into devicememory (Section 2.4.1). It happens to be

the case that the local memory usage of a thread is determined by itsmaximum usage over

the course of an entire kernel dispatch; in other words, having one particularly register

heavy section of a kernel will limit the rest of the kernel, even if the rest of the kernel does

not require asmany registers, and therefore having smaller, less register-heavy kernels will

improve the occupancy in those kernels. In the words of Laine et. al.:

To hide (…) latency, GPUs are designed to accommodate many more threads

than can be executed in any given clock cycle, so that whenever a group of

threads is waiting for amemory request to be served, other threadsmay be exe-

cuted. The effectiveness of thismechanism (…) is determined by the threads’ re-

source usage, themost important resource being the number of registers used.

It isworthnoting thatCPUhardware is becoming increasingly similar to theGPUmodel.

Intel's AVX-512 instruction set, for example, enables operating on 512 bits (or 16 single-pre-

cision floats) at once per core [54]. As such, a breadth-first design described here is equally

applicable to modern CPUs.

2.5 GPU Radix Sort

Since GPUs perform best on coherent workloads, it is often beneficial to sort the data

before a GPU kernel operates on it. For example, in Megakernels Considered Harmful [11]

Laine et. al. sort the paths to be shaded by material, enabling the subsequent material

kernels to avoid evaluating costly divergent branches. As a general rule, sorting will al-

ways improve the performance of subsequent kernels; however, whether the performance

improvement amortises the cost of the sort varies depending on the workload.

In a GPU-focused environment an efficient parallel sort is needed which can distribute

the workload over many GPU threads. There are many viable candidates for this – for

example, highly optimised variants of merge-sort for the GPU exist [55] –, but one specific

type of sort is particularly well-suited to these workloads due to its linearO(n) rather than

O(n logn) runtime: radix sort.

GPU radix sort, as outlined by Harada and Howes in Introduction to GPU Radix Sort

[56], is a three-phase algorithm. The input is assumed to be a buffer of integer keys (and

optionally a corresponding buffer of values), with the output being those keys and values

in stable sorted order.10

10A stable ordering means values with equal keys will remain in the same order relative to each other.

Firstly, there is the count phase, wherein the number of times each key occurs in the

source buffer is counted. This is usually performed by multiple threadgroups, where each

threadgroup processes a subrange of the data and outputs the per-threadgroup count for

each key to a buffer.

Secondly, the scan phase performs a parallel prefix sum on those counts. The purpose

of the scan phase is to compute the sum of the counts for each key from all preceding

threadgroups. As an example, if there were three threadgroups which had counts of 4, 1,

and 6 respectively for some key, the parallel prefix sum would produce 0, 4, and 5.

Finally, there is the distribute phase, which combines parts of the previous two stages.

Firstly, it needs to compute the offset for each item within the final, sorted output buffer.

It does this by first computing a per-threadgroup offset for each key: the offset for a par-

ticular key in the final, sorted buffer will be the total count of all lower-valued keys (which

we can compute from the output of the count and scan phases) plus the number of oc-

currences of that key in all prior threadgroups (given by the scan phase). Once it has a

per-threadgroup offset, it can perform a prefix sum within the threadgroup to compute

the local offset for each item and therefore the global offset.

Note that in the algorithm described above we need to compute a count for every pos-

sible key. In many cases that may not be practical; for example, a 32-bit key necessitates

232 count 'buckets'. This is fairly easily resolved by noting that the sort is required to be sta-

ble; therefore, rather than sorting by the entire key, we can instead perform an n-bit sort

⌈ log2(m)

n
⌉ times, where m is the maximum value of the integers being sorted, provided that

we sort the least significant bits first. Harada and Howes suggest a four-bit sort in each

iteration, necessitating only 16 count 'buckets'; these buckets (each of which is usually a

32-bit integer) can fit in a tractable 64 bytes of GPUmemory.

GPU radix sort is a key component of the adaptive and lightmap renderers described

in this thesis (Chapter 3) , and is also a basis for the ray direction sorting implementation

(Section 5.4). Optimisations to radix sort algorithms from prior work are presented in Sec-

tion 5.3.

Chapter 3

Architecture of the Lightmap Renderer

At the core of the lightmapper is aMonte Carlo path tracing renderer, responsible for com-

puting the lighting information in the scene and storing it into the lightmap texture.

Rather than directly implementing a lightmap path tracer (for which the output is dif-

ficult to validate), the implementation in LlamaEngine (Appendix B.1) was done in stages.

First, a camera-based path tracer was built, which was then extended with a renderer that

uses adaptive variance-based sampling; that adaptive-sampling framework was then used

to build the lightmap renderer. Similarly, this chapter will build upon an understanding of

the camera-based and adaptive renderers when describing the lightmap renderer.

In addition to describing the structure of these renderers, this chapter will present a

novel method for gather-based filtered sample accumulation and will show how camer-

a-based sampling for lightmap path tracing can be implemented.

3.1 The Path Tracing Framework

Nearly every component in this thesis will be built within the framework of a breadth--

firstGPUpath tracing renderer, loosely based on the implementation inRadeonProRender

[43]. Within this chapter, the focus will be predominantly placed on achieving a functional

implementation, and will not include modifications necessary for good performance (see

Chapters 5 and 6). However, this simple implementation serves as a useful framework for

other components, which mostly slightly modify or slot into the structure described.

The following process occurs every iteration (here also referred to as a frame). It as-

sumes that the camera position and scene state are fixed.

45

1. Generate primary rays: to begin, a ray is generated for every pixel of the output

image corresponding to points on the camera's sensor. For example, when rendering

from a camera with perspective projection, the rays have origins at the camera and

pass through locations on the camera's near plane.1

2. Compute path radiances using the path tracing estimator: for each indirect

ray:

(a) Compute intersections: find the intersection of the ray with the scene. This

intersection could be with scene geometry, or it could be with a skybox or envi-

ronment map.

(b) Add radiance: add any radiance from the intersection to the path correspond-

ing to each ray; for example, emission from an area light.

(c) Generate indirect rays: for the rays that hit scene materials, generate a new

ray starting at the surface and with a random output direction. Then, multiply

the path throughputs by the surface BRDFs given the input and output direc-

tions.

3. Accumulate samples: add the total radiance along each path to its corresponding

final image pixel in the output accumulation buffer and divide by the total number

of frames rendered using Welford's algorithm [57].2

Each of these steps is carried out in a separate compute kernel, requiring a separate

dispatch from the CPU. Every GPU thread operates on a single path at each step, and no

more than one path affects each pixel of the final output image. At no point does the CPU

wait on results from the GPU.

Intersection testing is performed using either the RadeonRays [15] or Metal Perfor-

mance Shaders [58] libraries (Appendix B.2)

1 Note that the locations within each pixel should be jittered every frame, since otherwise the output image
will be aliased.

2 Welford's algorithm is a method of computing the running mean and average of a set of samples; in this
case, we want the value in the output accumulation buffer to be the running average of all samples taken.

3.2 Gather-Based Sample Accumulation

The first extension is to the sample accumulation phase. In the outline given above, one

conceptual framing is that every path accumulates its radiance into a single pixel; given

the fact that there is exactly one path for every pixel, this is safe to do. However, it is more

useful to frame the process in another way: every pixel gathers the sample affecting it at

the end of the frame and adds its radiance.

This gather-based model enables some useful alterations. Firstly, image quality can be

improved by using filtered accumulation, where each pixel is affected by multiple paths; it

is well known that nearest-neighbour interpolation using a box reconstruction filter yields

poor visual results (Figure 3.1) [13], and that instead each path should affect a region of

pixels. To achieve this, we gather over all paths whose corresponding pixel is in a region

surrounding the current pixel, and add each path's contribution with a weight that is a

function of its distance from the pixel centre.34 In the model described in Section 3.1, each

path is indexed by its nearest neighbour pixel; therefore, gathering over all pixels in an area

is fairly straightforward.5

For lightmap sampling, filtered accumulation is doubly useful due to the fact that we

may not have complete coverage within a texel (i.e., we have 64 fixed sample locations per

texel [Chapter 4], whereas geometrymay be continuous within a texel). We therefore need

some way for samples within a given texel to contribute to neighbouring texels for which

all fixed sample locations have missed the geometry. One option would be to use conser-

vative rasterisation, where available, to rasterise the primary ray origins and directions to

an intermediate buffer. Another commonly used solution [8] is a dilation filter, which sim-

ply fills in each blank texel with data from its neighbouring texel; although this can appear

plausible, it is only an approximation. Gather-based accumulation, conversely, is robust

from a signal-reconstruction perspective, is not significantly more difficult to implement,

and has moderate overhead (Table 3.1).

Additionally, a gather-based model means that we can have multiple samples per pixel

3 Paths are generated at offsets within pixels for antialiasing, and that offset needs to be accounted for in the
filtered accumulation.

4 In LlamaEngine (Appendix B.1), the supported filter types are Box, Gaussian, Mitchell, and Lanczos-Sinc
filters with a 1.5 pixel support radius (based on the implementation in PBRT [13]), although theoretically
any filter with any support radius is supported.

5 Since there is in this case a one-to-one mapping of pixels to paths, gathering over an area is a matter of
selecting the pixels to gather and using the mapping to find the corresponding path for each.

Figure 3.1: Filtered sample accumulation in LlamaEngine (Appendix B.1). Scene is 'The
Wooden Staircase' by 'Wig42' [59].

(a) Box filter

(b) Gaussian filter with a two-pixel radius

(c)Mitchell filter with a two-pixel radius

The box filter provides the worst reconstruction, with harsh, aliased edges. The Gaussian filter
provides a smooth image at the cost of lost texture detail, while the Mitchell filter strikes a

reasonable balance, retaining detail while mitigating aliasing.

Table 3.1: Timing per frame for filtered vs. non-filtered accumulation at 2560×1440 reso-
lution.

Filtered accumulation 1.39ms
Non-filtered accumulation (box filter) 0.86ms
Filtering overhead 0.53ms

Filtered accumulation uses a Gaussian filter with a 3x3 pixel footprint. Adaptive rendering is
disabled, so there is one path per pixel.

or texel per frame. In adaptive sampling (Section 3.3), for example, there may be multiple

samples concentrated on the pixels with the highest variance, or in lightmap path trac-

ing samples may be focused on areas of the lightmap which are visible within the user's

current view. As such, a model that uses scattered writes with multiple samples per write

location necessitates atomic operations. Floating point atomic writes are not generally

supported in hardware andmust be emulated with integer compare-and-exchange. In ad-

dition, we usually want to accumulatemultiple pieces of data per pixel or texel; computing

the variance usingWelford's algorithm [57], for example, requires exclusive access to both

the running mean and variance, effectively requiring a lock in the presence of thread con-

tention. A similar situation exists with accumulation for spherical Gaussians, Ambient

Dice, and other non-orthogonal basis functions (Chapter 7).

In prior work, sample accumulation has been performed in a number of ways. Radeon-

ProRender uses scattered atomicwrites for adaptive rendering; similarly, theOpenCL path

tracer LuxRender [60] uses atomic writes to accumulate filtered results. PBRT accumu-

lates results into tiles, with one thread operating on each tile (and therefore on all pixels

within that tile); a global mutex coordinates filtered accumulation to the final output im-

age. All of these approaches have some issues in the context of lightmap path tracing. As

already mentioned, atomic operations conflict with algorithms that compute the variance

or update the mean in place (rather than accumulating all the results and then dividing

by the sample count at the end). On the other hand, PBRT's approach of per-thread tiles

doesn't scale to the large number of threads inherent in a vectorised or GPU-based imple-

mentation. A gather-based model resolves these issues.

3.2.1 Offset Buffer Generation

Removing the restriction that there is one path per pixel presents other issues, however;

namely that finding all of the paths affecting a given pixel becomes substantially trickier.

In this section, I propose an efficient method to generate an offset buffer. In the context

of sample accumulation, the offset buffer gives the index of the first path and the total

number of paths affecting a given pixel, enabling a gather operation to be performed over

all of those paths.

As a prerequisite to generating the offset buffer, the paths must be in sorted order rela-

tive to the indexing schemeused for the image (e.g. linear row-based indexing or tile-based

indexing [Section 5.2]). This can be accomplished by first generating a buffer of indices for

which to trace paths, sorting that buffer using e.g. GPU radix sort (Section 2.5), and then

generating paths according to the indices in that buffer, where each index is the discretised

nearest-neighbour of each path.

Formally, the offset buffer is an integer array such that offsetBuffer[i] contains the index

of the first element x within some source buffer, where there exists some mapping f(x)

such that f(x) = i. For the offset buffer to exist, the source buffer must be sorted by f(x).

If there is no element in the source buffer such that f(x) = i for a given i then offset-

Buffer[i] should contain the offset for the next highest integer j for which f−1(j) exists in

the source buffer. This property means that the number of elements for which f(x) = n

given some n is equal to offsetBuffer[n+ 1]− offsetBuffer[n].
The offset buffer can also be viewed as the exclusive prefix sum of the histogram of the

mapped values i. In fact, onemethod to produce an offset buffer would involve computing

a histogram in parallel on the GPU and then performing a parallel prefix sum over that

histogram.

Computing a histogram and then prefix sumof a large buffer is expensive; using AMD's

Parallel Primitives library [15] for a buffer containing 262,144 elements requires five dispatch

calls to the GPU for the prefix sum alone. However, by modifying the definition of the

offset buffer slightly and adjusting the code that reads from it accordingly we can reduce

the offset buffer computation to an inexpensive two-pass process comprised of a fill using

the GPU's blit/copy queue and then a simple compute kernel. The computation scales

linearly with the maximum possible value of f(x) for the elements in the source buffer

(which is usually the number of texels within the accumulation buffer).

The key observation is that, although f−1(i) is a many-to-one mapping (for example,

many paths may affect the same pixel), there is no more than one j such that f(xj) >

f(xj−1) for each possible output of f(x) (in other words, there is at most one first and one

last path affecting each pixel). We can therefore perform a single pass over the source

buffer, writing j to the offset buffer at f(xj) whenever f(xj) > f(xj−1).

Given this description, there remains the issue that not every possible value within

range of f(x) is guaranteed to be in the source buffer; there may be gaps. If there is no

element for which f(x) = j in the source buffer, offsetBuffer[j] must contain the offset for

the next highest integer k for which f−1(k) does exist in the source buffer; however, to do

this in a compute shader requires a single thread to scan either backwards or forwards over

multiple elements andwrite the offsets into the offset buffer, yielding quadraticworst-case

performance.

We can resolve this with two changes. Firstly, each thread j for which f(xj) > f(xj−1)

should write the offset j to both f(xj) and f(xj−1)+ 1; often the two write locations will be

the same, but if there are gaps in the source buffer both writes are necessary. Secondly, we

fill the offset buffer with some sentinel value (e.g. 0xFFFFFFFF for 32-bit integers) before

running the compute shader so that each element of the offset buffer that is not written

to by the compute shader holds the sentinel value.

When reading, we can use that sentinel value to identify missing entries in the offset

buffer. If any of the following are true, the number of elements in the source buffer for

which f(x) = n given some n is 0:

• offsetBuffer[n] is equal to the sentinel value.

• offsetBuffer[n + 1] is equal to the sentinel value.

• offsetBuffer[n + 1] is equal to offsetBuffer[n].

Otherwise, all elements in the source buffer in the range [offsetBuffer[i], offsetBuffer[i +

1]) have a value f(x) such that f(x) = i, as was desired.

This generation method (shown in full in Listing 3.1) is highly efficient. Generating the

offset buffer for a 2560 × 1440 output image (with 3,686,400 pixels) on the test hardware

(Section 1.3) takes 145µs for the compute shader; timings for filling the buffer with the

sentinel values are not available due to its being executed on the GPU's copy queue.

Listing 3.1: Offset Buffer Generation
// Input is a sorted buffer of texel indices belonging to particular paths.
// One thread should be dispatched per path, rather than per texel index.
kernel void generateOffsetBuffer(

const uint texelIndexCount,

const uint *pathTexelIndices, // the texel
indices for each path.

uint *offsetBuffer, // must be initialised
to some flag value (e.g. 0xFFFFFFFF)
before this.

uint *pathCountOut, // containing the active
path count

uint threadId [[thread_position_in_grid]],
uint pathCount [[threads_per_grid]]

) {

if (threadId >= pathCount) {
return;

}

// Thread i looks at paths i - 1 and i
uint pathIndex = threadId + 1;

// Fetch the texel for the previous path...
uint previousPathTexel = pathPixelIndices[pathIndex - 1];
// and for the current path
uint currentPathTexel = pathIndex == pathCount ? tileIndexCount :

pathTexelIndices[pathIndex];

// If this path is different from the previous path and the previous
addresses a valid texel...

if (previousPathTexel < currentPathTexel && previousPathTexel + 1 <
texelIndexCount) {
// fill the offset buffer for the index after the previous path
offsetBuffer[previousPathPixel + 1] = pathIndex;

// and the index for the current path (which may be the same as
previousPathPixel + 1)

if (currentPathPixel < texelIndexCount) {
offsetBuffer[currentPathPixel] = pathIndex;

}
}

// If the thread id is 0 (i.e. it's the first thread, initialise the first
element of the offset buffer to 0.

// Additionally, fill the index in the offset buffer corresponding to this
thread's element, since no earlier thread can have done it for us.

if (threadId == 0) {
uint currentPathPixel = pathPixelIndices[0];

if (currentPathPixel < texelIndexCount) {
offsetBuffer[currentPathPixel] = 0;

}

}

// We want to know how many active paths there are.
// The following condition will only be true for one thread.
if (currentPathTexel >= texelIndexCount && previousPathTexel <

texelIndexCount) {
uint activeCount = pathIndex; // The last path was pathIndex - 1, so

pathIndex is the number of active paths.
*pathCountOut = activeCount;

} else if ((threadId == 0 && previousPathTexel >= texelIndexCount) {
// There were no active paths.
*pathCountOut = 0;

}
}

3.2.2 Gather-Based Accumulation with Variable Paths per Pixel

At this point, we can bring together the offset buffer generation algorithmand the gath-

er-based method to implement a method for filtered accumulation of sample values in

parallel on the GPU.

The process for gather-based sample accumulation (including its dependencies) is as

follows, with every step being carried out on the GPU using compute shaders. The outline

follows that given in Section 3.1, with new stages italicised.

1. Select a (continuous) output location for each pathwithin a given frame; for example,

path 0 could be at location (0.5, 0.5) within texel (0, 0).

2. Sort the paths (e.g. using aGPU radix sort [Section 2.5]) by their discretised (nearest-neigh-

bour) output texels.

3. Generate an offset buffer such that offsetBuffer[i] returns the index of the first path

within the paths buffer whose nearest neighbour is texel i, or a sentinel value if there is no

such texel. The offset buffer must have capacity for the maximum possible texel index.

(a) Firstly, clear the offset buffer to a sentinel value using the GPU's blit queue. The

sentinel value must be outside the range of valid texel indices; for example, for 32-bit

indices the maximum unsigned integer 0xFFFFFFFF can be used.

(b) Then, perform the offset buffer generation algorithm (Listing 3.1), dispatching at

least one thread per path.

4. Generate primary rays.

5. Compute path radiances using the path tracing estimator.

6. Accumulate samples (modified) (Listing 3.2): for each texel in the output image,

gather radiance from affecting paths and write to the accumulation buffer.

• At the start of the compute shader, the current total mean and weight for the

current texel is either read from the accumulation buffer or initialised to zero.

• When using a single-texel box filter, the affecting paths are all those paths whose near-

est neighbour are the current texel.

• If accumulating within a radius, all paths whose nearest neighbours are texels within

the filter radius of the current texelmust be considered, with their contributionsweighted

according to the filter kernel.

• Once the mean and total weight have been updated, each thread writes back the

new values for its texel to the accumulation buffer.

Listing 3.2: Accumulation by Offset Buffer Sampling

float4 meanAndWeight = ...; // The mean and weight for the current texel.
uint *texelIndicesToPathIndices = offsetBuffer;

for sourcePixel in neighbourhood(currentPixel) {

uint texelIndex = pixelCoordToTexelIndex(sourcePixel);
uint basePathOffset = texelIndicesToPathIndices[texelIndex];

if (basePathOffset == kSentinelValue) {
return; // No valid paths for the current pixel.

}

// The index for paths at the pixel after the current one. The delta gives
the count.

uint nextPixelPathOffset = (texelIndex + 1 >= texelIndexCount) ?
texelIndexCount : texelIndicesToPathIndices[tileIndex + 1];

if (nextPixelPathOffset == kSentinelValue) {
return; // No valid paths for the current pixel.

}

for (uint pathIndex = basePathOffset; pathIndex < nextPixelPathOffset;
pathIndex += 1) {

float2 pathSampleLocation = pathSampleLocations[pathIndex];
float sampleWeight = filterWeight(pathSampleLocation -

currentPixelCentre);
AddPathSample(paths[pathIndex], sampleWeight, &meanAndWeight);

}
}

3.3 Adaptive Rendering

Monte Carlo integration is a progressive process wherein samples are continuously

taken until the result converges. However, not every pixel will converge at the same rate.

In camera-based rendering, for example, if a primary ray points at the skybox, the variance

betweenmultiple samples pointing at the skybox is likely to be extremely low. If, however,

paths along that ray often take routes with low probability but high radiance, those paths

will have high variance, and will manifest as noisy parts of the image.

Ideally, we want to produce a noise-free image as quickly as possible. Given that goal,

it does not make sense to equally spread effort across all texels. Instead, we can adaptively

sample different texels based on some metric such as their variance (Figure 3.2).

An initial framework for this was provided by Lee et al. (1985) [61], who derived a rela-

tionship between the number of sample rays and the quality of the estimate and concluded

that the number of sample rays needed is dependent upon the variance of the estimate.

Hillaire (2018) [4] describes a similar approach for adaptive sampling wherein the variance

of each texel is computed during sample accumulation and then that per-texel variance is

used to distribute new samples.

As per Hillaire, we can accumulate the running variance into a separate buffer during

sample accumulation usingWelford's algorithm [57]. Then, at regular intervals (e.g. every

64 frames), the variance within each 8×8 tile is averaged and output to a new buffer.6 A

prefix sum over that buffer is then performed to generate a probability distribution for

sampling. In my implementation, the buffer is asynchronously read back to the CPU, and

the probability distribution is generated there. However, it is also fully possible to generate

the distribution on the GPU: performing a parallel prefix sum over the elements in the

6The tile size was chosen to be 8× 8 since there are 64 threads in a SIMD group on the AMD test hardware,
and thus computing the average for a tile using SIMD operations is straightforward and does not require
threadgroup operations.

buffer will generate a cumulative probability distribution that can then be sampled from

using a binary search.7

This adaptive sampling takes place in a newpass at the start of the path-tracing process.

Within the pass, each thread probabilistically selects a pixel index and then outputs that

to a buffer.

When rendering adaptively, the number of paths per texel is variable: in a given frame,

multiple paths may affect a single texel, while some texels may have no paths traced. In

addition, the paths will not be generated in sorted order. These factors necessitate a num-

ber of alterations to the sample accumulation pipeline, which are discussed in depth in

Section 3.2.

There are some important caveats with adaptive sampling. Kirk and Arvo [62] showed

that adaptive sampling algorithms that both accumulate a sample set and use that sample

set to estimate howmanymore samples need to be taken are biased anddonot converge to

the true result; tomitigate this, the variance shouldbe calculated for a set of sampleswhose

contributions are later discarded. In many cases, the slight bias introduced is worthwhile

given the lesser computational expense.

Similarly, Mitchell [63] noted filtered accumulation (Section 3.2) will have incorrect re-

sults in the presence of adaptive sampling. Consider the case where a particular texel is

given very few samples while its contributing neighbours are given many: the end result

for that texel will have insufficient contributions from within its own region.

3.4 Lightmap Path Tracing

Sincewe cannot sample the entire lightmap every frame andmaintain interactive fram-

erates, only a subset of the lightmap can be rendered each frame. To provide the best user

experience, texels are randomly sampled on the lightmap (as opposed to, for example, ren-

dering the top-left of the lightmap in one frame and the top-right in the next), ensuring that

a preview for the entire lightmap (and therefore scene) is available as quickly as possible.

Given this adaptive approach, thepipeline for lightmappath tracingdeviates only slightly

from that of adaptive rendering (Section 3.3). As with adaptive rendering, a probability dis-

tribution is used to determine the pixel or texel each path operates on (or, for filtered ac-
7 Note that, in this scenario, each uniform random samplemust bemultiplied by the total before performing
the binary search.

Figure 3.2: Variance-Based Adaptive Sampling

(a) The path-traced image with one sample per pixel

(b) Samples taken per pixel of the converged image, where
lighter means more samples taken.

(c) The final converged image.

Note how many samples are taken in the noisy areas of the image with high indirect contribution,
while fewer are taken in the low-variance, directly lit areas.

cumulation, the nearest neighbour of the path). The initial probability distribution should

have equal probability for all texels with at least one valid sample location and zero prob-

ability for all others; sampling according to the number of valid samples per texel results

in undersampling for texels with few valid sample locations. This probability distribution

may be multiplied by the per-texel or per-tile variance as samples are accumulated to per-

form adaptive lightmap path tracing.

When generating primary rays, an instance-index and triangle-index pair are chosen

per-texel. That triangle's data is then decoded from the mesh's vertex buffers, giving a

world-space position, world-space normal, and lightmap UV for each of its three vertices.

The barycentric coordinates within the triangle are determined by the location within the

texel (and therefore the lightmap) and the triangle's lightmap UVs; high-precision calcu-

lations should be used in calculating the barycentric coordinates to avoid invalid values.

Given the barycentric coordinates, a world-space position and normal can be interpolated

from the per-vertex values (Section 4.3).

The primary ray's position is given by the interpolated world-space position. If scalar

accumulation is being used (accumulated cosine-weighted irradiance), then the ray direc-

tion is given by cosine-weighted sampling of the hemisphere around the surface normal

and the sample values may be directly accumulated.8

Regardless of whether only diffuse irradiance is being accumulated or whether an in-

direct specular representation is as well (Chapter 7), all materials and all material layers

should always be sampled in the path tracing process for an accurate result, not just the

diffuse layer. Specular to diffuse transport9 can be an important visual component of some

scenes and requires no additional effort to encode once the path tracer has support for

specular materials.

Accumulation into Linear Bases

If, instead of accumulating scalar cosine irradiance, the goal is to encode into a lin-

ear basis
󰁓

i biBi(s) so that radiance or irradiance may be reconstructed in any direction

(Chapter 7), two changes must be made. The first is that the rays should be generated

uniformly on the hemisphere rather than in a cosine-weighted fashion; the second is that

8This is because the PDF (probability density function) for a cosine-weighted ray is cos(θ)
π , which exactly

matches the Lambertian diffuse BRDF; dividing by the PDF cancels with multiplying by the BRDF.
9An example of specular to diffuse transport is light bouncing off a mirror to illuminate the diffuse ground;
another example is specular transmission through a glass window hitting a diffuse surface.

the basis coefficients bi should be stored into separate textures. Note that accumulation

with Welford's algorithm requires keeping track of the accumulated weight per-pixel; this

can be done by either storing the weight in the alpha channel of one of the accumulation

textures or by using a separate 32-bit floating point buffer.10

3.4.1 Interactive Lightmap Path Tracing

A major draw of GPU-based lightmap path tracing is that the user can continue to

interact with and navigate the scene while the path tracing process is taking place. In a

single-GPU environment, rendering the main view competes for resources with the path

tracer, necessitating some sort of load balancing to ensure that the main view continues

to render at interactive framerates.

This is relatively straightforward within the adaptive rendering framework. In adaptive

rendering, you provide a maximum number of paths to trace within each frame, and the

texels to operate on are probabilistically chosen. The problem of maintaining an inter-

active framerate can therefore be partially addressed by continuously adjusting the max-

imum path count; however, due to the resource contention and variable rendering work-

load as the viewchanges it is inevitable that therewill be some framecadence issues. Apers

et al. note [1] that this can be mitigated in a dual-GPU setup where one GPU is exclusively

dedicated to lightmap path tracing; however, such a setup was not available for me to test.

In my implementation, load balancing is done using a multiple-frame response, where

the path count for the next frame is determined by the exponential moving average frame

completion time t:

t(i+1) = 0.95t(i) + 0.05× frameTime(i) (3.1)

The path count p is then given by:

p(i+1) = p(i) · 3

󰁵
targetFrameTime− 󰂃

t(i+1)
(3.2)

󰂃 is some bias that aims to make sure we exceed the target framerate rather than hov-

ering above or below it. As an example, if a 30FPS target is desired, the target frame time

including 󰂃might be around 1000
33

ms rather than 1000
30

ms.

10Real-valued weights exist due to filtered accumulation and 16-bit floating point is insufficiently precise.

In practice, this simple measure does fairly well at maintaining the target framerate.

In some cases it is also worth introducing a maximum and minimum number of paths; a

maximumensures that the response doesn't cause theGPU to bemomentarily overloaded

withwork, while aminimumensures that a useful amount ofwork is being submitted every

frame.

3.4.2 Camera-Based Lightmap Sampling

Rather than randomly sampling all valid lightmap texels, Hillaire suggests [4] focusing

on the areas currently visible to the user's camera (Figure 3.3), although an implementation

design is not provided. When interactively navigating the scene, this can have a dramatic

positive effect on the rate of convergence from the user's perspective (Figure 3.4); in addi-

tion, it prevents samples frombeing taken in areaswith valid geometry that is permanently

occluded from the user's view. Camera-based sampling also helps to ensure that path ori-

gins are reasonably coherent in world space, improving ray-tracing performance for the

primary rays.

One of the earliest steps in the adaptive path tracing process is to generate the texel do-

main buffer: a list of all texel indices from which paths will be traced in the current batch.

Previously, this was done by randomly sampling from a probability distribution, where

each texel either had a binary probability (i.e. either it does or does not have valid sam-

ples) or a probability based on its variance. However, the list of texels to trace paths from

can also be generated through either a rasterisation or ray tracing process. In my imple-

mentation, the scene is rasterised from the user's view to a texture whose pixel count is

approximately the path count:

width = ⌊
󰁳
pathCount× aspectRatio⌋

height = ⌊

󰁶
pathCount
aspectRatio

⌋

The render texturehas a single-channel 32-bit uintpixel format. In the fragment shader,

the pixel coordinate is output as a texel index (i.e. a single number generated either by

linear row-based or by tile-based [Section 5.2] indexing) representing the lightmap texel,

where the lightmap texel is determined from the lightmapdimensions and the [0, 1) lightmap

UV passed through from the vertex shader. Once rasterised, this texture is copied to a

buffer, which is then passed through to the remaining stages.

Note that, due to floating-point imprecision, not every lightmap texel within view may

actually have valid samples in the buffer generated in Section 4.2. In the fragment shader,

therefore, the texel index is checked against the sample buffer to ensure that the ray gen-

eration stage will successfully find geometry in that texel; more specifically, the number

of bits set in the valid samples mask for the texel must not be zero. If it is, 0xFFFFFFFF

is output as the texel index. Similarly, the output texture is cleared to 0xFFFFFFFF before

rasterising the geometry. The radix sort phase sorts the invalid samples to the end of the

sorted path indices, which the offset buffer generation process (Section 3.1) then discards.

If the render texture resolution is coarser than the lightmap resolution (i.e. if there

are multiple lightmap texels per render texture texel), it is possible that some lightmap

texels will be missed given a fixed camera position. To combat this, the projection matrix

should have a subpixel jitter applied every batch in the same way as is done for temporal

antialiasing (Karis 2014) [64].

If there are translucent lightmapped surfaces in the scene (e.g. glass with lightmapped

specular) this approach presents a challenge, since both the translucent objects and any

objects behind it need to have lightmap samples generated. As a simple workaround,

translucent objects can be stochastically hidden in this view (e.g. with 0.5 probability of

being rasterised each frame), ensuring that both the translucent objects and any objects

behind them both receive lightmap samples.

As an extension to camera-based sampling, it is possible to perform camera-based

variance-based sampling (Section 3.3) for lightmaps. In addition to outputting the texel

indices, the variance for each rasterised pixel should be simultaneously written to a sep-

arate render target, which is then used to generate a per-texel probability distribution as

described in Section 3.3. That probability distribution replaces the per-texel probability

distribution used when performing non-camera-based sampling; when a pixel is chosen,

its index is read from the render target containing the texel indices corresponding to the

distribution, and that texel index is then output to the texel domain buffer. In my imple-

mentation, non-adaptive camera-based sampling performs very well, obviating the need

to also perform variance-based adaptive sampling (which carries a higher computational

overhead and implementation complexity).

Figure 3.3: A demonstration of camera-based sampling for lightmap baking. Scene credit
The Baking Lab [18].

(a) Sampling is performed from the camera's perspective, yielding a rapidly converging imagewith-
out visual artefacts.

(b) Baking is paused and the camera is moved. The non-sampled parts of the lightmap invisible
from the previous camera's perspective (indicated with red arrows) contain no indirect radiance
information.

Figure 3.4: Convergence rate of camera-based vs. non-camera-based lightmap sampling.

(a) Lightmap texels are uniformly randomly chosen to be sampled.

(b) Sampling is performed from the camera's perspective, yielding a rapidly converging image.

Both images use 921,600 samples per frame across 64 frames and the PMJ-02 sampler.

Chapter 4

Lightmap Parameterisation

To store data such as indirect illumination in a lightmap (Section 2.1), we need a parameter-

isation for every object in a scene, mapping from points on meshes to locations within the

lightmap texture. This chapter will detail the parameterisation process developed for use

in LlamaEngine (Appendix B.1), expanding on the method used in EA's Frostbite engine

[8] with implementation details and performance considerations. It will also detail how

that parameterisation can be used on the GPU to generate primary rays for path tracing

the lightmap.

In this chapter, ameshwill refer to a set of vertices, each carrying some possibly-unique

information, which are indexed into triangles. An object will refer to a set of one or more

instanced meshes, with a unique transform applied to the meshes' vertex positions. A

single mesh may appear multiple times in a scene as part of different objects; each object

appears only once.

4.1 Packing the Lightmaps

Since we assume that all meshes in a scene are comprised of triangles, parameteris-

ing the meshes into a lightmap amounts to finding a unique lightmap UV for every vertex,

identifying the location within the lightmap that the vertex's data is stored. That lightmap

UV, interpolated across the triangle to the shading point, is used to fetch the data from the

lightmap texture.

There are two main approaches to parameterising our scene. The first is to treat it

as a global problem: consider every mesh of every object independently and generate a

65

Figure 4.1: The parameterised lightmap for Sponza Atrium [5]

Each colour represents a separate mesh; however, each mesh may be composed of multiple charts
(planar unwrappings of sections of the mesh) which are distributed throughout the lightmap.

parameterisation for the entire scene using only a set of world-space vertices and the con-

nectedness between those vertices. This approach is both computationally expensive and

limits the ability to cache data, meaning that scaling a single object or adding a new object

to the scene necessitates restarting the entire process; it alsomeans that everymesh needs

a unique per-vertex stream of lightmap UVs, thus complicating instanced drawing.1

Rather than performing a global solve, I follow the basicmethod outlined byO'Donnell

in Precomputed Global Illumination in Frostbite (2018) [8]. O'Donnell suggests first parame-

terising each mesh into a series of charts, where each chart is a continuous unwrapping of

some subset of themesh's vertices. Each vertex then stores its positionwithin its lightmap

chart (in the range [0, 1] in X and Y) along with its chart index. Given a set of charts for

each mesh, every object in the scene can be packed into the lightmap according to the

world-space scale of that object, with the parameterisation being expressed by a per-ob-

ject per-mesh-chart scale and offset to the lightmap UVs. Using this approach, the chart

parameterisations can be cached per mesh, and only the packing of the charts into the

lightmap needs to be computed on a per-scene basis.

Generating high-quality two-dimensional planar mappings for 3Dmeshes is a very dif-

ficult problem and not one I sought to solve for my thesis. To generate the charts, I made

use of the open-source tool Thekla Atlas (Castaño 2013) [65] with some slight modifica-

tions (namely, to avoid placing margins on the edges of charts, to output the mesh-space

per-chart sizes, and to avoid packing the charts for each mesh into a single, larger atlas).

I integrated Thekla Atlas into the content pipeline for LlamaEngine, enabling near-auto-

matic mesh parameterisation.

Given a parameterisation of each mesh into charts, O'Donnell's process of generating

a parameterisation for the full lightmap is as follows:

1. For every instance of every mesh in the scene, compute the size in texels of its charts

given a target texel density per world space unit; assuming the chart is area-preserv-

ing, this will ensure that triangles are allotted lightmap area proportional to their

area, resulting in relatively consistent density across the entire lightmap.

2. Inset the edges of each chart by half a texel to avoid light bleeding due to bilinear
1 Instanced rendering is where amesh is reused inmultiple locations in the scene, exploiting the fact that the
data can be split into per-vertex and per-object information. For example, amesh duplicated into twodiffer-
ent places in a scene can be expressed using the per-mesh vertex positions and a per-object mesh-to-world
transform.

filtering. At this step, every chart for every instance has a scale for its lightmap UVs.

3. Conservatively rasterise every triangle in every instance into bitmap images for each

chart, resulting in onebitmapper chart per instance. This step canbedone in parallel

for all instances.

4. Sort all charts by their perimeter from largest to smallest.

5. Classify charts into size buckets based on their perimeter; for example, I define the

bucket to be ⌊ 1
16
⌋th of the perimeter.

6. Iterate through every chart and try to place it within a bitmap image (Section 4.1.1) of

the lightmap.

• This amounts to finding the first origin pixelwhere placing the chart at that pixel

would not result in an intersection with charts already in the lightmap.

• If the chart is in a smaller bucket than the previous chart, begin searching from

the first row of the image; otherwise, begin searching from immediately after

where the previous chart was placed. Doing this allows small charts to fill the

gaps left between larger charts without requiring a brute-force search for every

chart.

• If the chart cannot be placed, resize the lightmap and try again.

The end result of this process is a scale and offset for the lightmap UVs within each

mesh for each instance. This scale and offset should map all UVs into the range (0, 1) for

each axis, where the input (unscaled) UVs are in the range [0, 1]. Figure 4.1 shows an exam-

ple of the resulting parameterisation when applied to the lightmap UVs for each instance.

4.1.1 BitImage

The charts for each mesh instance are packed into a bitmap image, where the image

storeswhether each texel is currently occupied. Thedesignof the bitmap imagedata struc-

ture is not specified in prior work and has performance implications for the lightmap pa-

rameterisation process.

Themost trivial implementation of a bitmap image is to use one byte to store every bit,

and to store those bytes in a linear array. However, this design is fairly slow when used to

find an insertionpositionwithin another image, such as is donewhenplacing chartswithin

the lightmap. Instead, we can achieve a speedup of around 60%by instead storing the data

within individual bits of machine-width integers and using bitwise operations (Table 4.1).

Within this BitImage, every 2Dpixel coordinatemaps to an integer index and a bit offset

within that integer:

bitIndex(x, y) = y × storageWidth+ x (4.1)

(uintIndex, bitOffset) = (⌊bitIndex(x, y)
bitWidth

⌋,

bitIndex(x, y)mod bitWidth)

storageWidth is given by rounding up the width of the image to the nearest multiple

of the integer's bit width (e.g. 64 bits on a 64-bit architecture). This ensures that the start

of every row is aligned to an integer word, making insertion testing more efficient.

4.1.2 Rasterising the Charts

The output of Thekla Atlas is a per-vertex chart index andUVwithin that chart for every

mesh. Prior to inserting these charts into our lightmap, each chart must be rasterised into

a BitImage; this is done by iterating over every triangle in the mesh and assigning it in the

chart image.

Complicating matters is the fact that lightmaps are generally sampled using linear in-

terpolation, meaning lighting information from one texel can 'bleed through' to neigh-

bouring texels. To avoid this, when rasterising triangles to a chart, a one-pixel margin

is generally [8] left around each texel to prevent different geometry from sampling each

other's lighting information.

To assign a triangle to a chart, we first compute a bounding box around the pixels that

triangle affects, expanding the bounding box by one pixel on all sides to allow for the mar-

gin. Then, for every pixel within that bounding box, a box is formed around that pixel; if

the pixel's centre is at (x+0.5, y+0.5), the box's minimum point is at x− 0.5+ 󰂃, x+1.5− 󰂃,

where 󰂃 is a small tolerance to prevent a UV exactly at a pixel's centre from affecting its

neighbours. A triangle-box intersection text is then performed; if the triangle overlaps the

box, that pixel is marked as filled in the BitImage.

Table 4.1: Timing for packing a 2048× 1450 lightmap for Sponza Atrium.

ByteImage (one byte per pixel) 2910ms
BitImage (unaligned, without padding) 1780ms
BitImage (aligned, padding at the end of each row) 1090ms

4.1.3 Inserting the Charts

Testing whether a chart can be inserted into the lightmap at a particular position can

be done using bitwise operations. A chart can be inserted if the bitwise AND of every pixel

in the chart with the pixel at its insertion location in the lightmap is equal to zero; that is,

if there are no pixels that are set both in the lightmap and in the chart.

If the BitImage format is tightly packed, with no padding on the end of rows, testing

insertion for rows other than the first may involve performing an unaligned load from two

integers in the backing storage since the first pixel in a row may not be the first bit in

an integer. If, however, we pad the end of each row with bits set to zero, every row in the

charts will be aligned to integer boundaries, improving testing performance at a very slight

increase in memory usage.

Regardless of whether the charts are padded, we still need to be able to test at arbi-

trary insertion positions for the lightmap, which means performing unaligned loads for

the lightmap's pixels. To do this, we can bitshift and bitwise OR together the contents of

adjacent memory locations. The BitImage's storage is given one extra zeroed word at its

end to enable us to read at an offset within the last index without bounds checks or risking

buffer overruns.

Listing 4.1: BitImage Insertion Testing and Insertion
extension BitImage {

public func canInsertDisjoint(image: BitImage, x: Int, y: Int) -> Bool {
if image.width > (self.width - x) || image.height > (self.height - y) {

return false
}

// Compute how many words we need to stride through for each row.
// NOTE: we use 'self.width' rather than 'self.storageWidth' since we

don't care about the zero bits in the padding at the end of the row.
let elementsPerRow = (image.width + UInt.bitWidth - 1) / UInt.bitWidth

for row in 0..<image.height {
let selfBaseOffset = self.bitIndex(x: x, y: y + row)
let (selfIndex, selfOffset) =

selfBaseOffset.quotientAndRemainder(dividingBy:
BitImage.bitsPerElement)

let otherBaseOffset = image.bitIndex(x: 0, y: row)
let otherIndex = otherBaseOffset / UInt.bitWidth

let secondWordShift = UInt.bitWidth - selfOffset

for column in 0..<elementsPerRow {
let firstWord = self.storage[selfIndex + column]
let secondWord = self.storage[selfIndex + column + 1]

let selfTest = (firstWord >> selfOffset) | (secondWord <<
secondWordShift)

let otherTest = image.storage[otherIndex + column]

if selfTest & otherTest != 0 {
return false

}
}

}
return true

}

// Precondition: canInsertDisjoint(image, x, y)
public mutating func insert(image: BitImage, x: Int, y: Int) {

let elementsPerRow = (image.width + UInt.bitWidth - 1) / UInt.bitWidth

for row in 0..<image.height {
let selfBaseOffset = self.bitIndex(x: x, y: y + row)
let (selfIndex, selfOffset) =

selfBaseOffset.quotientAndRemainder(dividingBy:
BitImage.bitsPerElement)

let otherBaseOffset = image.bitIndex(x: 0, y: row)
let otherIndex = otherBaseOffset / UInt.bitWidth

let secondWordShift = UInt.bitWidth - selfOffset

for column in 0..<elementsPerRow {
let imageBits = image.storage[otherIndex + column]

self.storage[selfIndex + column] |= imageBits << selfOffset
self.storage[selfIndex + column + 1] |= imageBits >>

secondWordShift
}

}
}

}

4.2 Packing the Data for the GPU
Rasterising a lightmapusing these scales andoffsets is fairly straightforward; the clip-s-

pace position for each mesh vertex within the lightmap is given by the vertex's lightmap

UV transformed by the offset and scale produced in the preprocessing stage. However,

path tracing the lightmap is more complicated. Given some position within the lightmap

fromwhich we wish to trace a ray, we need to be able to determine the instance and trian-

gle index that overlaps that position within the lightmap. Once the instance and triangle

indices are knownwe can generate a primary ray based on the vertex data for that triangle.

Barring some sort of lightmap-space acceleration structure, finding the mesh and tri-

angle index amounts to a brute-force search through every triangle in the scene every time

we want to generate a ray. We therefore need a better solution.

If, following Frostbite's implementation, we restrict ourselves to a fixed number of sam-

ple positions within each texel, we can precompute the triangle and instance indices for

each of those sample positions. Generating a ray then becomes a matter of randomly

choosing a valid sample position and looking up the instance and triangle index.

While this general approach is sound, it requires a massive amount of data; a 20482

texel lightmap with 32-bit triangle and mesh indices (implying 32 × 2 × 64 = 4096 bits or

512 bytes per texel) leaves us with a 2GB lookup table. Quite aside from the fact that such a

large table imposes immense bandwidth requirements on the GPU, the simple fact is that

GPUmemory is limited and a 2GB allocation has significant implications on what else can

be stored in that memory.

We therefore need to somehow compress the data; conveniently, the data is highly

amenable to compression. For most texels all of their sample points will be occupied by a

single primitive, with only a few texels having a large number of primitives.

I propose encoding the data as follows. For every texel:

• Encode a 64-bit bitmask of the valid sample locations, where bit i is set if the i-th

sample in the Hammersley sequence is valid within the texel.

• Then, for every triangle-instance pair, encode a 64-bit bitmask of the sample loca-

tions which that triangle-instance pair covers, followed by the 32-bit instance and

32-bit triangle index.

Since the amount of data required per texel varies, an offset buffer must also be gen-

erated such that if j = offsetBuffer[i], sampleInfoBuffer[j] contains the sample coverage

information for texel i.

Using this method, the total memory usage for a 2048 × 1647 lightmap for the Sponza

Atrium [5]model is 110.58MB,with 13.5MBof that being the offset buffer and the remaining

97MB being the per-sample information. This compressed result is 14.9× smaller than the

naïve implementation.

4.3 Decoding the Data on the GPU
The compressed format described in Section 4.2 can be decoded in a reasonably effi-

cient manner on the GPU, although the implementation is complicated by the fact that

64-bit integer data types are often unavailable in GPU shading languages.

Given a target pixel location, each thread (responsible for generating one ray) retrieves

the location in the sample information buffer from the offset buffer. Then, at that location,

the first two 32-bit words (comprising on the 64-bit sample location bitmask) are retrieved.

The number of valid samples is given by the sum of computing the popcount of each inte-

ger, where popcount is a built-in function that returns the number of non-zero bits in an

integer.

An integer sample index i in the range [0, validSampleCount) is then uniformly randomly

generated. That index then needs to be mapped to the corresponding valid index j in

[0, sampleLocationsPerTexel), where sampleLocationsPerTexel is e.g. 64 if a 64-point Ham-

mersley sequence [39] is used. To do this, wewant to find the ith set bit in the valid samples

mask. If i is at least the number of non-zero bits in the lower 32-bit word, we want to find

the (i− popcount (lowerWord))th set bit in the upper 32-bit word; otherwise, we want to

find the ith set bit in the lower 32-bit word.

Finding the nth set bit in aword can be donewithout loops, making use of the popcount

function and an eight-bit-indexed lookup table [66]. Alternatively, a loop that checks each

bit in turn is a slower but simpler solution.

Once j has been found, we loop through all triangle-index pairs to find the first pair for

which bit j is set in the valid-sample-location bitmask. Given that bit index, we can com-

pute the sample location within the texel, reconstruct the barycentric coordinates based

on the triangle's vertices' lightmap coordinates and the sample location, and from that re-

construct the world space position and normal that we need for generating the primary

rays.

Listing 4.2 provides an implementation for the decoding. Note that it assumes that the

word containing the lower 32 bits is stored before the word containing the upper 32 bits in

a little-endian manner.

Listing 4.2: Lightmap Sample Information Decoding
uint texelSampleOffset = texelSampleBufferOffsets[y * uniforms.outputWidth

+ x];
uint validSamplesLowerBits = texelSampleBuffer[texelSampleOffset];
uint validSamplesUpperBits = texelSampleBuffer[texelSampleOffset + 1];
uint lowerBitsPopCount = popcount(validSamplesLowerBits);
uint upperBitsPopCount = popcount(validSamplesUpperBits);

uint validSampleCount = lowerBitsPopCount + upperBitsPopCount;

// Generate a sample from 0 to the valid sample count
uint sampleIndex = min(uint(validSampleCount *

sampleGenerator.sample1D()), validSampleCount - 1);

// Find the bit index for the sample.
uint lookupInt;
uint bitIndex;
uint lookupOffset;
if (sampleIndex >= lowerBitsPopCount) {

lookupInt = validSamplesUpperBits;
bitIndex = sampleIndex - lowerBitsPopCount;
lookupOffset = 1;

} else {
lookupInt = validSamplesLowerBits;
bitIndex = sampleIndex;
lookupOffset = 0;

}

uint hammersleySampleMask = nthSetBit(lookupInt, bitIndex); // e.g. 0b1
for the 0th sample, 0b10 for the 1st sample etc.

uint texelSampleDetailsOffset = texelSampleOffset + 2;
while ((texelSampleBuffer[texelSampleDetailsOffset + lookupOffset] &

hammersleySampleMask) == 0) { // Find the primitive index and shape
index that corresponds to this sample index.
texelSampleDetailsOffset += 4;

}

uint shapeIndex = texelSampleBuffer[texelSampleDetailsOffset + 2];
uint primitiveIndex = texelSampleBuffer[texelSampleDetailsOffset + 3];

// ctz == count trailing zeroes; e.g. given 0b100 the result would be 2
uint hammersleyIndex = ctz(hammersleySampleMask) + (sampleIndex >=

lowerBitsPopCount ? 32 : 0);
// Sample the Hammersely sequence using our sample index (and 64 samples

per texel)
float2 sampleOffset = hammersleySample(hammersleyIndex, 64);

Chapter 5

Accelerating the Path Tracer:

Improving Coherence

As discussed in Section 2.4, GPUs performwell on coherent workloads and poorly on inco-

herent ones. Given this, it is necessary for best performance (and therefore quickest artist

iteration time) to arrange the workload for the GPU in a manner that provides coherent

execution and memory access wherever possible. This chapter will consider stream com-

paction, a tile-based indexing method, and ray direction sorting as methods of improving

performance by ensuring coherent workloads. Additionally, examples will be given of how

the GPU radix sort implementations in prior work [56] can be accelerated using the SIMD

operations available on recent hardware.

5.1 Stream Compaction

As overviewed in Section 2.4.2, a naïve path tracer where each thread operates on a sin-

gle path is inefficient due to divergence within threadgroups. More concretely, not every

pathwill be active in every bounce of the path tracer; manymaymiss geometry or be prob-

abilistically terminated. The result of this is that in bounces after the first many thread-

groups will only be partially occupied; since every thread in a threadgroup must perform

instructions that any thread in the threadgroup performs (Section 2.4.1), this means that

work is wasted on inactive paths.

Instead, to maximise coherence and throughput, it is worthwhile to perform stream

compaction (Wald 2011) [53] to ensure that GPU threads operate only on active paths. To

77

recap Section 2.4.2, stream compaction generates an index buffer containing only the in-

dices of active paths, which is then used by later kernels to determine which path each

thread should act on.

Stream compaction incurs its own overhead, which is amortised by the savings in the

other kernels. In Wald's implementation [53] stream compaction was less than 1% of the

total runtime; for the implementation in this thesis, we see stream compaction account for

a more substantial 5% of the total runtime.

In LlamaEngine (Appendix B.1), following with the breadth-first split-kernel architec-

ture of both RadeonProRender and Laine et. al. [11], the path tracers are split into many

separate kernels to maximise coherence and throughput, and make use of stream com-

paction between those kernels to ensure full utilisation of the GPU's SIMD groups. Since

the number of paths active at each stage is unknown by the CPU, the GPU writes the ac-

tive path count to a buffer at various stages, which is then read by subsequent stages and

used to terminate threads whose index is greater than the path count and therefore have

no work to do.

The CPU can only specify themaximumnumber of threadgroups thatmay be required;

if any paths have been compacted away, the actual number required is likely less. As the

number of bounces increases and the number of paths drop there are an increasing num-

ber of threadgroups for which all threads terminate immediately after launching. This

entails a significant overhead if a high number of bounces are desired (as might be nec-

essary with highly specular paths). To counter this, I expand on prior work by simultane-

ously writing the required number of threadgroups for successive dispatches into indirect

buffers in addition to the active path count. The GPU reads the number of threadgroups to

dispatch from the current indirect buffer, eliminating the overhead of dispatching thread-

groups which have no paths to work on and terminate early; this reduction in overhead is

shown in Table 5.1.

While indirect buffers remove most of the overhead of dispatching zero-work thread-

groups, sorting and compaction unfortunately have a fixed overhead determined by the

maximum number of active paths. Since each threadgroup sorts or filters a fixed maxi-

mum amount of data and there is no direct ability to communicate between threadgroups,

intermediate resultsmust bewritten to devicememory andmerged in a separate dispatch.

The number of dispatches for a sort must therefore be determined on the CPU based on

Table 5.1: Timing per frame for path tracing with and without indirect buffers at
2560×1440 resolution on Sponza Atrium (Figure D.5).

Without Indirect Buffers With Indirect Buffers Percentage Improvement
12 bounces, RR after 4 228ms 221ms 3.2%
20 bounces, RR after 3 210ms 192ms 9.4%

As the number of inactive paths per bounce increases (either by lowering the first bounce at which Russian
roulette is applied or by increasing the total number of bounces) the performance benefit of using indirect

buffers increases.

the known maximum number of items.1

The performance impact is such that the per-bounce overheadwhen there are no active

paths and with ray direction sorting enabled (see Section 5.4) is around 380µs. Of this, all

but 9.8µs is due to the sorting and compaction; the zero-count indirect dispatches have

negligible overhead.

To incorporate stream compaction, the architecture from Section 3.1 is modified as fol-

lows, where alterations are italicised.

1. Fill an indirect buffer with the threadgroup counts and active path count. If adaptive or

lightmap rendering is not in use, this can be done by the CPU; otherwise, it is done while

generating the path offset buffer (Section 3.1).

2. Generate primary rays.

3. Compute path radiances using the path tracing estimator:

(a) Compute intersections.

(b) Add radiance (modified): add any radiance from any paths that missed scene ge-

ometry to the path corresponding to each ray and then mark those paths inactive.

(c) Inmultiple dispatches, filter and compact the path stream, generating a buffer that

contains the indices of all active paths. Note that this step differs from the Radeon-

ProRender implementation since kernels have been combined together to reducemem-

ory traffic. Section 2.5 on radix sort is a useful reference since many of the steps here

are similar.
1 As of June 2019, the Metal graphics API exposes the ability to enqueue compute dispatches directly from
within compute shaders [49], which enables the theoretical removal of this fixed overhead; however, this
capability was exposed after the work within this thesis and is therefore future work.

i. Count the number of active paths within each threadgroup using SIMD oper-

ations and output that count to a buffer. Fill the indirect buffers with the thread-

group and active path counts.

ii. Perform a parallel prefix sum over the per-threadgroup counts to compute the

per-threadgroup offsets.

iii. Compute the index i of each active path within its threadgroup and then output

the path index to a buffer at the sum of i with the per-threadgroup offset. The

path index is computed as a parallel prefix sum over all paths where the value for

a thread is 1 if the path is active or 0 if it is not.

(d) Generate indirect rays: for every thread index less than the active path count, fetch

the corresponding ray and path indices. For the rays that hit scenematerials, gener-

ate a new ray starting at the surface and with a random output direction. Then,

multiply the path throughputs by the surface BRDFs given the input and output

directions.

4. Accumulate samples.

5.2 Tile-Based Indexing

Image pixels locations are two-dimensional; buffer indices are only one-dimensional.

To store per-pixel information into a buffer we therefore need to map between 2D pixel

locations and 1D indices. Examples of this per-pixel information include per-path data or

ray information.

There are many possible invertible mappings from a 2D (x, y) output texel location to

a unique integer given the dimensions of the output image. However, not every mapping

Figure 5.1: Tile-based indexing with 4 × 4 tiles on an 8-wide grid

0 1 2 3 16 17 ...
4 5 6 7 20 21 ...
8 9 10 11 24 25 ...
12 13 14 15 28 29 ...
32 33 34 35 48 49 ...
36 37 38 39 52 53 ...
...

is equal in performance; since the paths are sorted by the output of the mapping (Section

3.2), we ideally want the mapping to group together pixels whose paths are likely to be

coherent. Additionally, we want the mapping to be fairly dense: we will be generating an

offset buffer that maps from every possible output of the mapping to every input (Section

3.1), and large gaps in the mapping will leave inefficient gaps in the offset buffer.

Consider the trivial mapping of pixels in a row-major fashion, where:

f(x, y;width) = y × width+ x (5.1)

This satisfies the second constraint (i.e. it is a dense mapping), but is less than ideal

for the first. In general, images are more similar in square blocks than in single-pixel-tall

lines; a wide range of image encoding and compression algorithms exploit this fact [67]. In

addition, in lightmap path tracing we ideally want to sort paths affecting the same triangle

together since they are likely to be highly coherent; lightmap-space geometry tends to be

closer to equilateral than highly stretched, making block-based sorting a good fit.

Given this, it is better to insteadmap from (x, y) pixel locations to locations within n×n

tiles, where n is a power of two. A good choice for n is the square root of the number of

threads per SIMDgroup to try to have one SIMDgroupper tile; for example, onAMD'sGCN

architecture n = 8. An index of this form is comprised of a tile index and index within the

tile, which are bitshifted and bitwise OR'd together such that the tile index comprises the

bitWidth− log2(n)most significant bits and the index within the tile fills the lower log2(n)

bits. Let an index of this form be called a tile format index. Figure 5.1 shows an example of

a tile-based indexing scheme.

If the dense mapping constraint is dropped, the mapping from a pixel coordinate to a

tile format index T (x, y) is given by:

T (x, y,n, tilesPerGrid) =(
󰁭x
n

󰁮
+ tilesPerGrid×

󰁭y
n

󰁮
) << log2(n

2) (5.2)

OR ((xmod n) + n× (ymod n))

where tilesPerGrid =
󰁯
width

n

󰁰
, OR is a bitwise OR operation, and mod is the modulo

operator. Since n is a power of two, the expensive modulo and division operations can be

be replaced by bitwise operations; amod n is equal to a AND (n − 1) and
󰁭
a
n

󰁮
is equal to

a >> log2(n).

The inverse mapping T−1(i) from a tile format index to a pixel coordinate is given by:

T−1(i,n, tilesPerGrid) = (n · (imod tilesPerGrid), n ·
󰁭 i

tilesPerGrid

󰁮
) (5.3)

In cases where the mapping from a given pixel to the first path that affects it is pro-

vided by the offset buffer this mapping is sufficient; there will be a few gaps in the offset

buffer where there are incomplete tiles (tiles on the edge of the image where only some of

the pixels lie within the dimensions of the output texture), but that is generally an accept-

able tradeoff. If, however, there is no offset buffer, the paths are packed densely into the

paths buffer (e.g. in non-adaptive camera-based rendering where every pixel has exactly

one path), and either the width or the height of the image is not divisible by n, we need

a modified indexing scheme that ensures that there are no gaps in the mapped values for

inputs within the image dimensions. In this case, T (x, y) is defined as:

T (x, y,n, tilesPerGrid,width,height) =(n×min(n,height− n×
󰁭y
n

󰁮
)
󰁭x
n

󰁮
(5.4)

+ (n×width)
󰁭y
n

󰁮

+ (xmod n) + (ymod n)×min(n,width− n×
󰁭x
n

󰁮
)

Note that tile-based indexing does notmean that each SIMD group can only operate on

paths from within a single tile; fully-utilised SIMD groups are still preferred over coherent

tiles. Having the data formatted in this way simply makes it more likely that SIMD groups

will have coherent data, and is a straightforward way to achieve small performance gains.

Although I developed this indexing scheme independently, I noted upon implementa-

tion of the Metal Performance Shaders backend (Appendix B.3) that Apple recommends

[58] a similar scheme, noting that such a scheme makes better use of GPU caches:

When possible, organize rays within a batch for spatial locality. Rays that orig-

inate at nearby points or are oriented in similar directions tend to access the

same locations in memory and can therefore make more effective use of the

GPU's caches.

For example, the camera rays associated with nearby pixels in the output im-

age will likely originate at the same point and travel in very similar directions.

Therefore, divide the output image into small tiles (e.g., 8×8). Rather than lay-

ing out all of the rays in the ray buffer in scanline order, first lay out the ray in

scanline order within each tile, then lay out the tiles in scanline order or ac-

cording to some space filling curve.

Across the scenes I have tested, tile-based indexing is a simple measure to achieve

around 5% quicker render times; Table 5.2 shows the improvement for a specific case.

Table 5.2: Timing per frame for camera-based path tracing of Sponza Atrium (averaged
over 1024 frames).

Linear row-based indexing 191ms
Tile-based indexing 182ms
Percentage improvement 4.9%

5.3 GPU Radix Sort with SIMD Operations

The core of my radix sort (Section 2.5) implementation is adapted from Harada and

Howes' description in “Introduction to GPU Radix Sort” [56] and AMD's radix sort imple-

mentation within their Parallel Primitives library (which is bundled with RadeonProRen-

der [43]). However, I have made some key adjustments to the implementation to optimise

performance.

One useful property of performingmultiplen-bit sorts is that knowing the range of pos-

sible values for your keys reduces the number of n-bit sort passes over the data required. In

the GPU path tracer, it is true in many cases that the number of possible keys is restricted

to some value; as such, I make use of this optimisation wherever possible. As an example,

if you only consider values up to 512 (which makes use of the lower nine bits), only three

passes must be performed rather than eight.

Within the implementation of the radix sort we canmake use of lane-wise SIMD-group

operations, which have existed in hardware for some time but have only recently been

exposed by graphics APIs such as Metal [49]. Within a SIMD group, each thread can ac-

cess local variables belonging to other threads within the same group without the need

for synchronisation. This enables efficient execution of a number of parallel algorithms.

Of particular interest to us for radix sort is the ability to efficiently perform a parallel pre-

fix sum within a SIMD group: given N threads where each thread t has some value vt, the

value of
󰁓t

i vi can be efficiently calculated. This capability was not available to the authors

of AMD's Parallel Primitives library at the time it was written; however, I make heavy use

of SIMD operations into my implementation.

More specifically:

• Computing the count for each each key2 within a threadgroup is done using a inclu-

sive SIMD parallel prefix sum; after completion, the last thread within each SIMD

group contains the total count across each SIMD group. To compute the total count

within each threadgroup, the count fromeachSIMDgroup is copied into threadgroup

memory, loaded by the first SIMD group, and then the same process is repeated.

• The parallel prefix sum over the threadgroup counts can be done using SIMD oper-

ations: each thread loads the count for one threadgroup from device memory, per-

forms a parallel prefix sum within the SIMD group, and then outputs the result back

to memory. Since this will only compute the prefix sum for as many threads as there

are within a SIMD group (typically 32 or 64), this process needs to be recursively ap-

plied if the number of items for which to compute the parallel prefix sum is greater

than the threads per SIMDgroup; this canbedonebywriting the count for each SIMD

group to (either threadgroup or device) memory, loading those counts back into the

SIMD registers for each thread, and then repeating the process.

• Determining the target offset of a keywithin a threadgroup (once theoffset of that key

within device memory for that threadgroup is known) can be done using a parallel

prefix sum within that threadgroup.

2 From this point, 'key' will be used as shorthand for the n-bit section of each key that we are considering for
the current sort pass.

Table 5.3: Timing for performing GPU radix sort on arrays of 32-bit numbers (averaged
over 10 runs).

Element Count Without SIMD With SIMD Percentage Improvement
65, 536 4.57ms 4.24ms 7.8%
64, 000, 000 738.56ms 599.66ms 23.1%
268, 400, 000 2656.84ms 2219.07ms 19.7%

Table 5.3 shows the performance improvements SIMD operations can provide in radix

sort.

A parallel prefix sum can be implemented using only SIMD shuffles and additions.

Starting with a stride of half the SIMD width and decreasing by half at each step, each

thread adds the value contained in the thread at index threadIndex−stride.3 Figures 5.2 and

5.3 provide examples of SIMD summation.

Figure 5.2: SIMD Parallel Inclusive Prefix Sum: four threads

Action Thread 0 Thread 1 Thread 2 Thread 3
Start Value v0 v1 v2 v3
Add Thread (i - 2) v0 v1 v0 + v2 v1 + v3
Add Thread (i - 1) v0 v0 + v1 v0 + v1 + v2 v0 + v1 + v2 + v3

5.4 Ray Direction Sorting
One of the most expensive parts of the path tracing process is ray traversal and inter-

section testing. For ray traversal, we ideally want coherent rays: that is, rays that will be

processed in the same SIMD group to have similar origins and directions and therefore

take a similar path through the ray traversal acceleration structure and fetch cache-local

data. Given this, it is sometimes worthwhile to sort the rays in some way; since traversal is

a muchmore expensive operation than sorting, the cost of the sort is often amortised and

performance improved.

In Efficient ray sorting for the tracing of incoherent rays (2012) [68], Nah et. al classify the

rays into one of 24 direction buckets (determined by the primary direction and octant) and

then stably sort by position, reporting a 1.48× speedup by doing so. I have also imple-

mented ray direction sorting, although the implementation details differ due to the differ-

ent structure of my path tracer. Additionally, in my implementation, I sort by the octant of
3 Alternatively, the Metal standard library provides an implementation in the form of
simd_prefix_exclusive_sum or simd_prefix_inclusive_sum [49].

Figure 5.3: SIMD Parallel Inclusive Prefix Sum: eight threads with values

Action Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7
Start Value 1 0 3 2 0 1 2 1
Add Thread (i - 4) 1 0 3 2 1 1 5 3
Add Thread (i - 2) 1 0 4 2 4 3 6 4
Add Thread (i - 1) 1 0 4 6 6 7 9 10

the ray direction only. As described in Section 5.3, an eight-bit sort (as would be required

to store 24 buckets) is double the cost of a four-bit sort, and inmy tests the extra coherence

frommore refined bucketing did not offset the increased cost of the sort.

When ray sorting is enabled in my implementation, an additional buffer is passed to

every shader stage that generates rays. Whena ray is generated, the indexof that raywithin

the rays buffer is bitwise ORed with the bucket index such that the bucket index is in the

upper n bits and the lower 32−n bits contain the ray index. A sort pass is then performed,

operating only on the upper n bits; since radix sort is stable it will preserve the order of ray

indices contained within the same bucket.

During the ray intersection kernels, the upper n bits are masked out and the ray for

each thread is retrieved from the ray index specified by the lower bits. At the end of the

intersection testing, the intersection results are placed back into the intersections buffer

at the source ray index, ensuring that the source rays and the output intersections are in

the same order.4

Unfortunately, the performance argument for implementing ray direction sorting is

fairly poor. On all of the scenes I tested, enabling ray direction sorting had effectively

no impact on performance, the frame timings being so close as to be within the margin of

error. This is not to say that the ray direction sorting is totally ineffectual, since if it were

the frame timings would increase; rather, the improvements in ray intersection coherence

are only enough to offset the cost of the sort. It may bemore worthwhile onmore geomet-

rically complex scenes than are available tome, since, as Nah et. al. note, the performance

improvement of ray direction sorting is generally “proportional to the number of ray-tri-

angle intersection tests for each scene.” Table 5.4 gives an example of the performance

footprint of ray direction sorting relative to the full path-tracing process; if ray direction

sorting is removed intersection and occlusion increase in time to make approximately the

same total.

Raydirection sorting is only implementedwithin theRadeonRays intersector since I did

not have access to theMetal Performance Shaders kernels tomake the equivalent changes

(Appendix B.2).

4 This modification to the ray intersection kernels was not present in the original RadeonRays implementa-
tion (Appendix B.2).

Table 5.4: Frame timing breakdown for 'Modern Hall' (Figure D.4) [5] with Russian
Roulette disabled, eight bounces, and ray direction sorting enabled at 2048 × 2048 res-
olution.

Stage Time
Region Domain Generation 0.21ms
Primary Ray Generation 0.78ms
Paths Buffer Initialisation 0.99ms
Intersection Testing 12.10ms
Occlusion Testing 8.82ms
Path Stream Compaction 7.08ms
Surface Shading 21.22ms
Ray Direction Sorting 4.48ms
Light Sample Gathering 2.99ms
Sample Accumulation 1.19ms

Total 59.86ms

Modern Hall is a fairly geometrically simple scene, and as such surface shading is a larger
portion of the total time (being slightly more expensive than intersection and occlusion testing
combined). On scenes with more geometric complexity the balance shifts towards ray tracing

being the most expensive stage.

Chapter 6

Accelerating the Path Tracer:

Reducing Variance

This chapter delves into methods of accelerating the path tracer by reducing the variance

between samples, thereby improving the convergence rate and providing a better preview

in less time. Next event estimation, the use of progressive sample sequences, and im-

portance sampling are overviewed; for importance sampling, considerations when using

a real-time layered material model are discussed. Additionally, rasterisation-based light-

ing methods that improve convergence at the cost of bias are discussed as alternatives to

traditional path tracing lighting methods.

6.1 Next Event Estimation

Next event estimation is a commonly-used method that improves convergence in path

tracing by explicitly sampling light sources. Traditionally, a path tracer recurses through

the scene, adding radiance every time a light source is hit; therefore, at every intersection

only an indirect ray is created. Next event estimation extends this by randomly selecting a

known light sourcewithin the scene, calculating its contribution to the point being shaded,

and then firing a shadow ray towards the light source to test for occlusion. To avoid double

contribution from the lighting, the light's radiance must not be added directly if it is also

hit by the indirect ray. Next event estimation is used by PBRT [13], RadeonProRender [43],

and LuxRender [60], among others.

Since shadowrays only need to test for occlusion –whether there exists any intersection

89

along each ray, rather than finding the closest intersection along each ray – it is usually

faster to perform occlusion queries for shadow rays than intersection queries for indirect

rays.

Next event estimation is particularly important in the context of tracing scenes made

for real-time applications such as games. Commonly, these real-time applications make

use of analytic light sourceswith a delta distribution; point lights, spotlights (in the formof

point lights with angularly varying emission), and directional lights do not exist in the real

world andhavenoarea. As such, there is no chanceof an indirect ray being fired around the

scene eventually hitting one of these light sources since they are infinitely small; instead,

we must explicitly sample from them to account for their contribution.

Even when area lights are used, next event estimation remains useful since in many

cases the probability of randomly hitting the area light is low. For instance, the sun has

a small solid angle but extremely high intensity; explicitly sampling it ensures that we ac-

count for that intensity not only when a path randomly hits it, thereby reducing the vari-

ance.

Next event estimation requires the following modifications to our path tracing frame-

work (Section 3.1), where changes are italicised:

1. Generate primary rays.

2. Compute path radiances using the path tracing estimator:

(a) Compute (primary or indirect ray) intersections.

(b) Add radiance at the intersection.

(c) Generate indirect rays: for the rays that hit scene materials, generate a new

ray starting at the surface andwith a randomoutput direction. Additionally, sam-

ple a light source, output the path-throughput-multipliedBRDF-weighted contribution

from that light source to a buffer, and generate a shadow ray to that light source. Then,

multiply the path throughputs by the surface BRDFs given the input and output

directions.

(d) Compute occlusion of shadow rays with the scene.

(e) For every light sample, check if the shadow raymissed the scene (i.e. hit the light). If the

ray missed, add the light's contribution from the light samples buffer to the path's

radiance.

3. Accumulate samples.

6.2 Progressive Sample Sequences
Monte Carlo processes estimate a value by sampling. In the simplest approach, each

sample is fully random, generated from entropy or approximated from some pseudo-ran-

dom process. However, this yields poor convergence for Monte Carlo integration; since

the sample distribution is random, the samplesmay not be well-distributed and could end

up clumping in parts of the sample space.

Rather than utilising fully-random sampling, therefore, it is better to select samples

from a sample set or sequence. An overview of the state-of-the-art is presented by Chris-

tensen, Kensler, and Kilpatrick. In the abstract to their paper Progressive Multi-Jittered Sam-

ple Sequences (2018) [69], they summarise:

Sample patterns can be divided into two categories: finite, unordered sample

sets, and infinite, ordered sample sequences. A progressive (a.k.a. hierarchi-

cal or extensible) sample sequence is a sequence where any prefix of the full

sequence is well-distributed.

Using (finite) sample sets requires a-priori knowledgeof howmany sampleswill

be taken, and yields high error if only a subset of those samples are used. This

is fine for rendering final images with a fixed number of samples per pixel. But

in several common settings – including adaptive sampling – we do not know in

advance how many samples will be taken, or we are using incremental results

during computation as in interactive rendering and off-line rendering writing

check-point images. In these cases we need (infinite) progressive sample se-

quences.

Infinite, ordered, progressive sample sequences are an ideal fit for progressive lightmap

path tracing. In my implementation, I have included support for the Correlated Multi-Jit-

tered (Kensler 2013) [70] and Sobol (Sobol 1967) [71] sample sequences, based on the im-

plementation in AMD's RadeonProRender [43], along with Christensen et. al.'s PMJ and

PMJ-02 sample sequences. These sampling sequences are compared in Figure 6.1.

To use a sample sequence, we need to keep track of the current sample index for every

path. For non-adaptive camera-based sampling where every pixel receives one path per

frame, this is simple: the sample index is just the frame index. For adaptive or lightmap

rendering where the number of samples per pixel is probabilistic and variable, the sam-

ple index is retrieved via atomic operations on a pixel-indexed buffer. The pixel index is

readily available when generating primary rays; therefore, at that stage the sample index

is atomically read-and-incremented from the samples-per-pixel buffer and stored on the

Ray's extra storage. At the first intersection, the sample index is transferred from the Ray

to the Path, from which it is then read for the remaining bounces.

There are multiple different quantities to sample, and each should use its own sample

sequence. The most important are primary ray samples (i.e. where on the camera lens to

sample or what direction on the hemisphere to sample for lightmaps), light samples (for

use in sampling area lights) and BRDF samples (for use in importance sampling the BRDF).

Each of these quantities is known as a dimension.

Samplers can be seeded with a dimension and a sample index i to produce the ith sam-

ple in that dimension. For Sobol and CMJ, these samples can be generated on the GPU, as

is done by RadeonProRender. For the progressive multi-jittered sequences, however, and

in particular for the PMJ-02 sequence, generation on the GPU is too costly. Instead, fol-

lowing Christensen et. al., I provide 128 precomputed 4096-element sequences in a buffer

to the GPU.

As O'Donnell notes [8], samples for neighbouring pixels should be decorrelated. If

neighbouring texels share the same sampling sequences the lighting information will ap-

pear similar when other local information (such as normal or lightmap UV) is similar,

resulting in visible discontinuities if some attribute becomes dissimilar (e.g. at lightmap

seams). Instead, we should randomise the sequences used for each pixel, trading artefacts

for noise.

To do this, a random buffer is used, which is initialised to a uniform random 32-bit in-

teger for every pixel or texel at startup time. This random value can be used to determine

the sample sequences to use. For example, by interpreting each 7-bit section of the inte-

ger as a sequence index (yielding up to four dimensions) each pixel receives a randomised

combination of sequences. Even if neighbouring pixels do happen to receive the same

sequence for one dimension, it is unlikely that they will receive the same sequence for an-

other dimension, resulting in a decorrelated visual result. When sampling across multiple

bounces or with more than four dimensions the random seed can be permuted in some

way or the sequence indices can be incremented.

Figure 6.1: Comparison of sample sequences for sampling a camera-generated sample
domain (Section 3.4.2).

(a) Uniform random sampling

(b) Correlated Multi-Jittered sample sequence [70]

(c) Sobol sample sequence [71]

(d) PMJ-02 sample sequence [69]

518,400 paths were traced every frame, corresponding to a 960× 540 camera resolution, and
eight frames were rendered.

The CMJ, Sobol, and PMJ-02 sequences all perform relatively well, with uniform random
sampling exhibiting significantly higher noise.

6.3 Importance Sampling

Importance sampling is a method to reduce the variance in Monte Carlo estimation by

taking more samples in higher-value regions. Rather than generating samples uniformly

within the sample domain (for example, over the hemisphere around the surface normal

for aBRDF), samples are instead generated inproportion to their intensity; given a function

f(x) that we are trying to estimate, we want to generate samples for x such that we take

more samples in areas where f(x) is high-valued.

To ensure that the sampling remains unbiased, we must also divide by the probabil-

ity PDF(x) of generating a sample with that x for every sample. The estimator simplifies

in the case where we are able to exactly sample from the function distribution such that

PDF(x) = f(x). Consider an estimate of the product of two functions f(x) and g(x) where

we importance sample f(x):

Estimate =
1

n

n󰁛

i=1

f(Ui)g(Ui) (6.1)

=
1

n

n󰁛

i=1

f(s)g(s)

PDF(s)

=
1

n

n󰁛

i=1

f(s)g(s)

f(s)

=
1

n

n󰁛

i=1

g(s)

The probability distribution function PDF(x) is the derivative of the inverse of the sam-

pling distribution. The integral of the PDF is known as the cumulative distribution function

or CDF; when generating a sample x with a probability PDF(x) from a uniform random

sample U , x will be given by CDF−1(U).

Importance sampling is critical in achieving a low-variance result in path tracing and

should be applied wherever possible. Although importance sampling can be used any-

where that sampling is required, there are twomain areas for which it is most useful: sam-

pling of materials and of lights.

6.3.1 Importance Sampling Materials

In path tracing, we randomly choose a new ray direction at every bounce after hitting

a surface and then multiply the throughput of the path by the surface's BSDF in that di-

rection. Rather than uniformly randomly choosing a new direction, we can in many cases

generate directions by importance sampling the BSDF, thereby reducing variance.

Although the list of BSDFs in use is growing increasingly long as real-time applications

shift to more complexmaterial models, there remain twomain BSDFs of interest for many

applications: Lambertian diffuse and GGX specular. Both can be efficiently importance

sampled.

For Lambertian diffuse, sampling in a cosine-weighted hemisphere around the surface

normal is sufficient; this can be done by uniformly randomly generating points on a disk

and then projecting those samples onto a hemisphere. Since the height of a point on the

hemisphere is determined by the cosine of the angle between the normal and the point

(i.e. z = cos(θ)) this will result in cosine-weighted samples.

For the GGX distribution, Heitz introduced an efficient method in Sampling the GGX

Distribution of Visible Normals (2018) [72]. While this method only importance samples

one component of the GGX specular function (excluding the visibility and Fresnel compo-

nents), the variance reduction is significant and themethod canbeefficiently implemented

on the GPU without any need for precomputation or lookup tables.

Sampling Real-Time Material Models

One goal of a lightmap baking tool for real-time applications is to try to match the ap-

pearance within the real-time application as closely as possible so that the lighting and

materials designed for the rasteriser match the artist's intentions when used within the

path tracer. In effect, the rasteriser becomes an approximate ground truth; if the lighting

baked by the path tracer does not match with the models within the rasteriser, even if the

path tracer produces a more physically correct result, the path tracer can be considered

incorrect.

One way in which path tracers and real-time applications commonly differ is in their

use of material models. In particular, layeredmaterials are very difficult to accurately sim-

ulate in a rasteriser but can be modelled much more simply in a path tracer.

The most common layered material used in real-time applications such as games is an

additive diffuse and specular mix. Such a model is not necessarily energy conservative.

In many cases, the diffuse and specular layers are separately normalised to obtain an ap-

proximately energy conserving response for a range of roughness values and then simply

added together during evaluation; this is the approach taken by LlamaEngine (Appendix

B.1).1

In an additive model, we still want to be able to importance sample the BRDF. We can

do this by randomly choosing a layer to sample – either diffuse or specular, for example –

and then dividing that layer's radiance by the probability of choosing that layer. Given a

probability p of sampling the specular layer instead of the diffuse:

radiance =
1

N

󰁛

N

(diffuse+ specular) (6.2)

=
1

N
(
󰁛

N

diffuse+
󰁛

N

specular)

≈ 1

N
(

1

1− p

󰁛

(1−p)N

diffuse+
1

p

󰁛

pN

specular)

Alternatively, it is possible to importance sample from one layer and then evaluate for

all layers; however, doing so may result in low probability paths for the importance-sam-

pled layer having high intensities for the other layer, causing high-intensity 'fireflies' to

appear in the final image (Figure 6.2).

Regardless of how indirect rays are sampled, direct light sampling with next event es-

timation should, where possible, always evaluate every layer in the same way that a light

would be evaluated within a rasteriser.

6.3.2 Importance Sampling Lighting

In next event estimation, a lightmust be chosen tobe explicitly sampled at every surface

interaction. In my implementation, light sampling is performed by randomly choosing a

light with probability proportional to its intensity, omitting any spatial considerations.

1 A more accurate method is to model the Fresnel reflectance and transmission for the specular layer, com-
puting how much energy gets transmitted to and reflected out of the diffuse layer for each view direction,
roughness parameter, and light direction. Recent variants of such a method are provided by Weidlich and
Wilkie [73] and Jakob et. al [74].

Figure 6.2: Evaluating path traced material layers separately vs. simultaneously.

(a) Evaluating separately (b) Evaluating simultaneously

On the left, a material layer is selected to be sampled, the intensity is divided by the selection
probability, and then that layer is evaluated and divided by the sampling PDF. On the right, a
material layer is selected, no modification is made to the intensity, and then all layers are

evaluated and divided by the sampling PDF.
Note the 'fireflies' in the centre symbol on the blue curtain when both layers are evaluated

simultaneously; this is caused by high-intensity low-probability paths.

This method was chosen solely due to its simplicity, and there are many lower vari-

ance, more sophisticated methods for choosing which lights to sample from when shad-

ing a particular hit point. Two recent techniques are Adaptive Direct Illumination Sampling

(Vévoda and Křivánek, 2016) [75] and Importance sampling of many lights with adaptive tree

splitting (Estevez and Kulla, 2017) [76], both of which build complex hierarchical structures.

Estevez and Kulla also use sampling heuristics weighing the orientation, energy, a BRDF

approximation, and the distance between the hit point and the light. In scenes with a large

number of lightswhere an unbiased result is desired, a solution such as Estevez andKulla's

would be greatly beneficial in reducing the sampling variance.

Area lights (including emissive surfaces and the environment map) deserve particular

attention. For these types of lights, next event estimation is not strictly necessary; since

they have some area, given enough samples a path will always hit any contributing area

light. However, the convergence rate of this can be poor, particularly for rough surfaces

with a wide BRDF lobe. To compensate for this, we can use a strategy called multiple im-

portance sampling (Veach and Guibas, 1995) [77]. Multiple importance sampling (MIS) com-

bines multiple sampling strategies – for example, combining BRDF importance sampling

with explicit light sampling based on next event estimation – by weighting the contribu-

tion from each sampling strategy according to some heuristic based on the probability of

each sampling strategy for the given sample. One commonly used heuristic is the balance

heuristic, where the weight wi for sampling strategy i is given by:

wi(s) =
PDFi(s)󰁓
j PDFj(s)

(6.3)

In the context of light sampling, the process is to first sample the light in a direction

determined by the light, weight by the balance heuristic, and add the contribution to the

path's radiance; and then sample the light in a directiondeterminedby theBRDF,weight by

the balance heuristic, and add that contribution to the path's radiance. While theoretically

straightforward, this has onemajor complication in the context of a breadth-first GPUpath

tracer.

To determine a light's contribution in a particular direction, we first need to know

whether the light is occluded in that direction. To check whether a light is occluded, we

either use a shadow ray (for light sampling) or an indirect ray (for BRDF sampling); only

when processing the indirect ray's intersection do we know whether it hit the light. If the

intersection is with something other than the area light it means that the area light's con-

tribution in the BSDF direction was zero, and we do not need to handle this in any special

way; however, if the intersection is with the area light then we need to weight its contri-

bution by the balance heuristic before adding it to the path's accumulated radiance.2 This

necessitates keeping track of the light sampled at the previous step and the weight wbsdf

for importance sampling the light using the BSDF in somememory corresponding to each

ray.

6.4 Biased Light Sampling

If a biased result is acceptable, there are other alternatives to direct lighting than path--

traced next event estimation that are easily integrated intomany existing 3D engines. One

approach is to forgo ray-traced shadows and instead use the standard shadow mapping

techniques implemented within the rasteriser, thus enabling many or all lights to be sam-

pled at each hit point.3 This has the additional benefit of exactly following the rasteriser's

lighting path, giving a biased result that is nevertheless a closer match to the final ras-

terised image.

Additionally, it is possible to reuse existing algorithms for use in light culling or spa-

tial sampling. In recent years, lighting techniques for rasterisation have favoured tiled or

clustered shading [78, 79, 79, 80]. Usually implemented in view-space, tiled shading di-

vides the output image into a series of small tiles and generates a list of lights for each

to sample from; clustered shading extends this with a series of depth slices, forming a 3D

grid-like structure. Both techniques assume a finite falloff radius for each light's intensity,

which does not match the actual inverse square falloff and is therefore biased; however,

in practice there is a point at which a light's contributions are negligible and therefore can

be discarded.

View-space clustered shading can be trivially adapted to build a world-space grid for

clustered shading in path tracing. To do so, an orthographic frustum is tightly fit to the

scene bounds along one of the major axes, forming an axis-aligned bounding box. When

2 If we intersect with an area light that is not the light we explicitly sampled at the previous step we add its
contribution without any MIS weighting.

3With ray-traced shadows, one shadow ray must be generated and traced for every light that is sampled,
which quickly becomes untenable in the case of many lights. The ideal number of lights to sample at each
hit point is a tradeoff between convergence rate and time per sample that varies from scene to scene.

shading a hit point, the hit point's position is transformed into the space of that bounding

box, from which the 3D cluster cell can be found. Lighting can then be performed using

the lights specified for that cluster, either by using all lights with their associated shadow

maps or by uniformly randomly sampling one of the lights affecting the cell.

Biased light sampling in this manner fully supports all BRDFs and light types that are

supportedby the rasteriser,making it a goodoptionwhenbaking radiance-encoding lightmaps

(rather than lightmaps encoding only diffuse irradiance) for real-time scenes. In the case

of area lights where no accurate, efficient solution for shadowing exists within the ras-

terisation-based pipeline, Heitz, Hill, and McGuire present a technique that allows ana-

lytic evaluation of area lights in conjunction with accurate ray traced shadows [81]. Such

a technique could equally be employed here, wherein punctual and directional lights use

rasterised shadow maps and other light types are given accurate shadows by way of ray

tracing.

6.4.1 Irradiance Caching

Irradiance caching is a family of techniques that aim to cache the direct lightingwithin a

scene. Introduced in 1998 byWard, Clear, and Rubinstein [82], and extended by numerous

authors in a SIGGRAPH 2007 course [83]), the basic concept is that the rate of convergence

of path tracing can be greatly improved by caching lighting information in a spatial data

structure in a preprocessing pass, albeit at the cost of a biased result.

In the context of a GPU-focused lightmap path tracer, the simplest implementation

is an irradiance cache storing direct Lambertian irradiance as a single colour value for

each texel.4 This can be achieved by simply rasterising the scene to a lightmap, optionally

making use of the world-space clustered shading grid to accelerate lighting. Then, during

path tracing, the incident lighting is retrieved from the lightmap texture.

Rasterising the scene to a lightmap can be performed very quickly, and retrieving the

lighting from the lightmap is also very inexpensive. Convergence time is greatly increased

since every vertex along a path will contribute radiance from every light, and the path trac-

ing process is quicker due to the lack of shadow rays. Figure 6.3 demonstrates the im-

proved convergence rate irradiance caching provides.

Irradiance caching comes with a few limitations, however. First and foremost is that

4This is the approach used by EA's Frostbite engine [4].

the BRDFs in the scene are restricted to be Lambertian:5 any view dependency is lost when

storing as a scalar texture. This can be alleviated somewhat by using spherical basis func-

tions to encode the distribution of the exitant lighting; see Křivánek et al. [84] for details.

However, note that illumination due to direct lighting with glossy BRDFs is generally high

frequency, and is therefore difficult to accurately represent withmost spherical basis func-

tions; for example, all of the spherical basis functions discussed in Chapter 7 preserve only

low-frequency information.

Secondly, the lighting information is limited by the resolution of the lightmap: sharp

cutoffs or shadows lose definition and are blurred. If the material albedo is baked into

the irradiance cache there is also a corresponding loss in texture detail; however, it is also

possible to apply thematerial albedo for each hit point during path tracing, since for Lam-

bertian irradiance the albedo linearly scales the BRDF.

Care must also be taken when rasterising the lightmap. The output position for each

mesh vertex is given by its lightmap UVs; however, it is possible that some triangles may

not be rasterised to the lightmap since they do not cover the pixel centre. When sampling

from the lightmap, this leads to black patches where there should be valid irradiance val-

ues. To alleviate this, conservative rasterisation should be used where supported, ensur-

ing that triangles which overlap a pixel in any way will always be rendered. If conservative

rasterisation is unsupported (either by the hardware or by the rendering API), standard an-

tialiasing techniques can be used in conjunctionwith a dilation filter that fills empty pixels

with the blended contents of neighbouring filled pixels.

5 There exist closely related more sophisticated techniques under the name of radiance caching, which cap-
tures directionality and may also capture multiple bounces of light.

Figure 6.3: Irradiance Caching

(a) Rasterised scene without indirect lighting. (b) Path traced scene using a rasterised direct
illumination lightmap (irradiance cache) for ir-
radiance lookups.

(c) Rasterised scene with indirect from a path--
traced scalar irradiance lightmap, rendered
without irradiance caching.

(d) Rasterised scene with indirect from a path--
traced scalar irradiance lightmap, rendered
with irradiance caching.

This scene from Interdimensional Llama (see Appendix B.1) in many ways represents a best-case
scenario for irradiance caching: many lights, complex shadowing, and diffuse surfaces.

All images were rendered for 10 seconds. Note the marked decrease in visible noise when using
the lightmap rendered with irradiance caching compared to that rendered without. Without
irradiance caching, many light samples are occluded or low-intensity, resulting in slow
convergence; however, irradiance caching enables the lighting environment to be efficiently

captured.

Chapter 7

Spherical Basis Functions

In previous chapters, we havemainly been concerned with computing the radiance within

the scene. This chapter shifts the focus onto how that radiance can be stored in a manner

that improves the visual quality of the reconstructed lighting.

As discussed in Section 2.2, it is in many cases more useful to store the lightmap's in-

cident lighting in a format other than a simple colour value. Doing so enables support for

normal mapping and convolution with various arbitrary BRDFs; for example, reconstruct-

ing diffuse and specular indirect lighting from a single representation.

One such format is a linear spherical or hemispherical basis. Depending on the choice

of basis function, encoding into a linear basis may or may not be trivial. In this chapter,

the mathematical formalism behind encoding into linear bases is described, with a focus

on techniques that require little storage or computation and are therefore suitable for the

GPU. Additionally, a newmethod is presented that enables non-negative least-squares en-

coding to be performed progressively on the GPU.

7.1 Linear Bases

It is often useful to approximate a function f(s) by some linear combination of basis

functions B(s). In computer graphics, for example, we may want to approximate an in-

finitely-high-frequency incident light distribution with some combination of basis func-

tions, reducing the storage required to store that light distribution to a single coefficient

for each basis function.

Given some target function f(s), a set of basis functions Bi(s) (often called lobes if the

103

basis functions are of the same type in different directions), and a set of weights bi for each

of those basis functions, we can approximate the function value in direction s as:

f(s) ≈
󰁛

i

biBi(s) (7.1)

A simple example of this is a polynomial basis where Bi(s) = si, where a truncated

Taylor series approximates the function. Other commonly used bases include the Fourier

basis, where a function is approximated as the sum of sine waves of varying frequencies,

and Bernstein polynomials, used in Bézier curves and piecewise splines.

If the basis function is defined such thatB(s) = B(||s||) (where ||s|| is the absolute value
of s) the basis function is known as a radial basis function. This is particularly useful for

spherical functions, where the basis function can be defined such that it depends on the

angular distance from some point on the sphere. Figure 7.1 shows an example of lighting

reconstructed from a linear basis of radial basis functions, while the individual contribu-

tion of each function is shown in Figure 7.2.

When encoding into a linear basis, the target function f(s) can either be known ana-

lytically or sampled using Monte Carlo integration. The basis functions must be fixed for

a given encoding, although they may be arbitrary and unrelated to each other.

In the case of lightmaps, the indirect lighting can be stored into a set of textures, where

each texture represents one coefficient bi at various points within the scene.

Figure 7.1: Approximation of theWells HDR environmentmap [85] with the Ambient Dice
SRBF basis functions.

f(s)
󰁓

i biBi(s)

Figure 7.2: The individual Ambient Dice SRBF basis functions comprising the approxi-
mated Wells HDR environment map.

Bi(s) biBi(s) Bi(s) biBi(s)

7.2 Least-SquaresEncodingofSphericalBasisFunctions

To approximate f(s) with some linear combination of basis functions
󰁓

i biBi(s) we

need to find the weight vector b. Since, in general, f(s) may not be exactly represented

by the linear basis, we instead need to minimise the error according to some metric.

One such metric is the least-squares error, or the squared difference between the true

value and the approximation. The least-squares error may be easily solved for and pro-

vides good quality results, although it does disproportionately weight outliers and is not

necessarily ideal in all cases.

Minimising the least-squares error can be done in a functional-analysismanner by solv-

ing the following equation:

min
󰁝

S

(
󰁛

i

biBi(s)− f(s))2 ds (7.2)

where S is the integration domain; typically this will be over the entire sphere, but the

same techniques apply over the hemisphere or over other arbitrary domains.

To minimise, we differentiate the function with respect to each unknown bi and then

set the derivative to 0.

E =

󰁝

S

(
󰁛

i

biBi(s)− f(s))2 ds

dE

bi
= 0

Let g(s) =
󰁓

j bjBj(s)− f(s). d
bj

󰁫
g(s)

󰁬
= Bj(s) for each bj .

dE

bi
=

d

bi

󰁫󰁕
S
(
󰁓

i biBi(s)− f(s))2 ds
󰁬

=
d

bi

󰁫󰁕
S
(g(s))2 ds

󰁬

= 2

󰁝

S

g(s)
d

bi

󰁫
g(s)

󰁬
ds

= 2

󰁝

S

g(s)Bi(s)ds

= 2(
󰁛

j

bj

󰁝

S

(Bi(s) · Bj(s)))ds− 2

󰁝

S

(Bi(s) · f(s))ds

Therefore, by setting dE
bi

= 0,

󰁛

j

bj

󰁝

S

(Bi(s) · Bj(s)))ds =
󰁝

S

(Bi(s) · f(s))ds (7.3)

This is a standard least-squares matrix equation. On the right-hand side we have the

raw moments, which, when performing Monte Carlo integration, are the projection of the

sample values onto the basis functions1; on the left, we have the weight vector bmultiplied

by the Gram matrix, where Gij =
󰁕
S
(Bi(s) · Bj(s))ds. To find the weight vector b we can

multiply the raw moments by the inverse of the Grammatrix:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

b1

b2
...

bn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

󰁕
S
(B1(s) · B1(s))

󰁕
S
(B1(s) · B2(s)) . . . (B1(s) · Bn(s))

󰁕
S
(B2(s) · B1(s))

󰁕
S
(B2(s) · B2(s)) . . . (B2(s) · Bn(s))

...
...

󰁕
S
(Bn(s) · B1(s))

󰁕
S
(Bn(s) · B2(s)) . . . (Bn(s) · Bn(s))

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

−1 󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

󰁕
S
(B1(s) · f(s))

󰁕
S
(B2(s) · f(s))

...
󰁕
S
(Bn(s) · f(s))

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

If the rawmoments are computed by Monte Carlo integration, the Grammatrix can be

applied to each sample to perform progressive encoding. Given a set of samples where the

kth sample sk a value f(sk), the weight vector b is given by:

b =
1

k

󰁛

k

f(sk)(G
−1B(sk))

1 Projecting the sample values onto the basis functions simply means multiplying each sample value f(s) by
B(s) and accumulating the result.

The Grammatrix is the identity matrix for sets of orthonormal basis functions such as

spherical harmonics (section 8.1); therefore, performing a least-squares solve for spheri-

cal harmonics requires only projecting the radiance samples onto the basis functions and

does not need a matrix multiplication. However, many basis functions, such as spherical

Gaussians or Ambient Dice, are not orthonormal, and for these basis functions standard

least-squares methods are necessary.

The functional analysis method of least-squares solves was brought to my attention

by Peter-Pike Sloan, who also published a brief description of the method in Ambient Dice

(Iwanicki and Sloan, 2018) [12]. In the context of sampling and Monte Carlo integration,

a functional-analysis style solve is actually a non-obvious approach. The most immediate

option, given a set of samples and a set of basis functions, is to construct a matrix system

that directly tries to solve for the lobe amplitudes; i.e. given a set of radiance samples sk
with values f(sk), the matrix system would be:

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

B1(s1) B2(s1) . . . Bn(s1)

B1(s2) B2(s2) . . . Bn(s2)
...

...

B1(sn) B2(sn) . . . Bn(sn)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

b1

b2
...

bn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

f(s1)

f(s2)
...

f(sn)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

In prior work, the absence of a functional-analysis approach has presented challenges.

Since the obvious method of least-squares optimisation is performed on all samples, that

requires having all sample values and directions be stored inmemory andmeans that pro-

gressive rendering is impossible.

For example, Pettineo and Neubelt made use of spherical Gaussians in The Order: 1886

[31]. Facing the problems of expensive least-squares solves and high memory costs, they

decided that a naïve solution would have to suffice: they simply projected the samples

onto each lobe independently as if each one formed an orthonormal basis [10].2 The re-

sults from thismethod are visually poor compared to a least-squares or non-negative least-

-squares solve, appearing washed out and lacking definition.

Figure 7.3: Spherical basis functions over the hemisphere on theWells HDR environment
map [85].

(a) The upper hemisphere of the Wells HDR environment map.

(b) Ambient Dice Cosine-Lobe SRBF over the sphere (RMSE: 0.557).

(c) Ambient Dice Cosine-Lobe SRBF over the hemisphere (RMSE: 0.522).

The hemisphere-constrained solve yields a much closer visual match to the source image,
although the mean-squared error is only slightly reduced.

7.2.1 Spherical Basis Functions Over the Hemisphere

In most cases, spherical basis functions are solved to minimise the error over a spher-

ical domain; for example, if the function represents incident light at a point, the approxi-

mation should account for the light in all directions.

However, in some cases, it may appear to make sense to minimise the error only over a

hemisphere. For example, in lightmap baking the incident lighting is zero for all directions

in the hemisphere opposite the surface normal, and all directions to be queried will be on

the hemisphere. Minimising the hemispherical error will yield higher quality results on

that hemisphere for radiance reconstruction since all information below the hemisphere

can be discarded (Figure 7.3).

The mathematical formalism is identical for least-squares solves over any domain, in-

cluding over the sphere and hemsiphere. When generating the Grammatrix for the hemi-

sphereby sampling, sampledirections shouldbe taken from theuniformhemisphere about

the surface normal – usually defined to be (0, 0, 1) in tangent space – rather than from a

uniform sphere.

Unfortunately, solving over the hemisphere means that every lobe has a different total

influence (i.e.
󰁕
Ω
Bi(ω)

2 dω), rather than the same influence in different directions. This

can cause issues when using fits to try to approximate the cosine-weighted irradiance or

specular lighting from each lobe since each lobe needs to be weighted differently.

To elaborate, if the basis functions are defined over the hemisphere, there is an implicit

guarantee that sampling in any direction below the hemispherewill result in zero radiance.

While this may seem obvious, consider that spherical basis functions are often used to

enable normal mapping, wherein the shading normal differs from the geometric normal

(and therefore the centre of the hemisphere). In the case where the shading normal is not

aligned with the geometric normal, care must be taken in integrating the BRDF to ensure

that all directions below the geometric normal's hemisphere return zero radiance.

This issue makes finding analytic solutions to the BRDF integral challenging, since the

integral must be clipped by the geometric hemisphere, the basis function's domain (if it is

not the entire sphere), and theBRDF's hemisphere. In comparison, basis functions defined

on the sphere only need to account for clipping by the BRDF's hemisphere and the basis

function's domain (if applicable).
2 Unbeknownst to themat the time, this is in fact exactly the rawmoments in the functional analysis solution;
they were one matrix multiplication away from the full reconstruction.

7.3 Progressive Least-Squares Encoding
Both the functional analysis and direct least-squares solves have a few shortcomings,

particularly in the context of progressive encoding. For progressive encoding – as is desired

when viewing the results of a progressive path-trace of a lightmap –we need to have a valid

b vector for use in reconstruction at every step so that we can display the partial result of

the solve with the samples taken so far.

A direct solve is impractical in this context, which means a functional analysis-style

solve must be used. When the basis functions are not orthonormal, this necessitates an

N ×N matrix multiplication at each step (where N is the number of lobes), which in turn

requires N × N fused multiply-add instructions to simply calculate the weights. Both

least-squares solve methods also pose no constraints upon the b vector, meaning that the

per-lobe weights can become negative. This can, in turn, make the reconstructed radi-

ance negative in parts of the function space. Negative light is physically implausible, and

is particularly problematic when approximating specular lobes, as can be seen in Figure

7.4.

Figure 7.4: Indirect specular from spherical Gaussian lightmaps.

(a) Least-Squares (b) Non-Negative Least-Squares

In this section I propose a novel method for progressive least-squares encoding for

spherical basis functions (Listing 7.3.1).3 This method is efficient, can run on the GPU,

converges fairly quickly, and requires storing only the current amplitude bi and a weight

for each lobe. Crucially, it allows the imposition of arbitrary constraints upon the lobe

amplitudes by simply projecting the constraints onto the values at each iteration of the
3 This technique was first informally published in a blog post based on research done as part of this thesis
[86].

algorithm; for non-negative encoding, for example, that entails clamping the basis ampli-

tudes to be strictly positive at each step.

The conceptual underpinning of themethod to try to evaluate how accurately the func-

tion R(s) =
󰁓

i biBi(s) approximates each incoming radiance sample f(s) and to adjust

each lobe amplitude bi by the difference in a form of gradient descent. More formally, it is

a special case of Jacobi or Gauss-Seidel iteration for when the function space is iteratively

sampled.

To provide background context, it is first useful to look at how youmight solve the sys-

tem (either for the accumulated rawmoments or for each sample) using Jacobi or Gauss--

Seidel iteration, two iterative algorithms for solving systems of linear equations in a least-

-squares manner. At each step, Jacobi iteration applies the following method to solve the

equation Ax = b, where A is a matrix and x and b are vectors:

x
(k+1)
i =

bi −
󰁓

j ∕=i Aijx
(k)
j

Aii

(7.4)

Gauss-Seidel iteration differs only in that it updates each element of the x vector in

turn and uses the updated elements to calculate the rest; Jacobi iteration will compute the

entirety of the x(k+1) vector before overwriting any part of the previous x(k) vector.

If we apply the Jacobi algorithm to our functional analysis least-squares equationGb =

m, where m is the vector of moments (the accumulated projection of the sample values

onto the basis functions), we get:

b
(k+1)
i =

mi −
󰁓

j ∕=i Gijx
(k)
j

Gii

(7.5)

=

󰁕
S
(Bi(s) · f(s))ds−

󰁓
j ∕=i

󰁕
S
(Bi(s)Bj(s))b

(k)
j ds

󰁕
S
Bi(s)2 ds

(7.6)

Similarly, it is possible to apply Jacobi or Gauss-Seidel iteration per-sample rather than

on the whole system, yielding:

b
(k+1)
i =

Bi(ω)(f(ω)−
󰁓

j ∕=i Bj(ω)b
(k)
j)

Bi(ω)2
(7.7)

On their own, neither per-sample nor full-system Jacobi or Gauss-Seidel is particularly

useful for progressive least squares encoding in linear bases. The full-system variant re-

quires that we have all samples in advance, which makes it non-progressive, while the

per-sample variant produces an unusably noisy estimate to the b vector for the sample's ω.

However, we can combine the per-sample and full-system variants to create a new

method which is ideal for progressive solves. In particular, if we take the numerator from

the per-sample version and the denominator from the full system, we can, with a few alter-

ations, performprogressive least-squares encoding. To derive themethod, we start back at

Equation 7.3 and solve for a single bi, assuming that all bj are known from a prior iteration:

󰁝

S

(Bi(s) · f(s))ds =
󰁛

j

bj

󰁝

S

(Bi(s) · Bj(s))ds

= bi

󰁝

S

Bi(s)
2 ds+

󰁛

j,j ∕=i

bj

󰁝

S

(Bi(s) · Bj(s))ds

bi

󰁝

S

Bi(s)
2 ds =

󰁝

S

(Bi(s) · f(s))ds−
󰁛

j,j ∕=i

bj

󰁝

S

(Bi(s) · Bj(s))ds (7.8)

We can bring the entire right hand side under the same integral due to the linearity of

integration.

bi

󰁝

S

Bi(s)
2 =

󰁝

S

(Bi(s) · f(s)−
󰁛

j,j ∕=i

bj(Bi(s) · Bj(s)))ds

=

󰁝

S

(Bi(s) · (f(s)−
󰁛

j,j ∕=i

bj · Bj(s)))ds

Finally, we end up with the following equation for bi:

bi =

󰁕
S
(Bi(s) · (f(s)−

󰁓
j,j ∕=i bj · Bj(s)))ds󰁕

S
Bi(s)2 ds

(7.9)

There are two integrals here that can be computed iteratively using Monte Carlo in-

tegration. The denominator,
󰁕
S
Bi(s)

2 ds, can be precomputed; however, it is more accu-

rate in practice to instead compute the denominator in lockstep with the numerator since

that helps to cancel out sampling bias. At every step of the algorithm, the denominator is

stored separately from the b vector, requiring C +1 values per lobe where C is the number

of colour channels.

Note that Equation 7.9 is very similar to Equation 7.6 for Jacobi iteration on the whole

system, with the key difference being that the entire numerator is brought under the same

integral. In addition, rather than performing Jacobi iteration on the vector of rawmoments

m, we instead perform one Jacobi or Gauss-Seidel iteration per-sample and compute the

final b vector using a Monte Carlo process, where the bi value at each iteration is derived

from the b vector in the previous iteration.

Using that iterative framework, we can simplify the numerator by introducing and fac-

toring out b(k)i :

b
(k+1)
i =

󰁕
S
(Bi(s) · (f(s)−

󰁓
j,j ∕=i b

(k)
j · Bk(s)))ds󰁕

S
Bi(s)2 ds

=

󰁕
S
(Bi(s) · (f(s)−

󰁓
j b

(k)
j · Bj(s) + b

(k)
i · Bi(s))ds󰁕

S
Bi(s)2 ds

=

󰁕
S
(Bi(s) · (f(s)−

󰁓
j b

(k)
j · Bj(s))ds+ b

(k)
i

󰁕
S
(Bi(s)

2)ds
󰁕
S
Bi(s)2 ds

≈
󰁕
S
(Bi(s) · (f(s)−

󰁓
j b

(k)
j · Bj(s))ds󰁕

S
Bi(s)2 ds

+ b
(k)
i

Let ∆ = f(s) −
󰁓

j bj · Bj(s), or the difference between the current sample value and

the current estimate for the current sample's direction. ∆ is constant for all lobes within

a given a particular sample and therefore only needs to be computed once per iteration.

Therefore, for each i, we can compute the bi estimate for a particular sample in direction

ωs as:

Ests(b(k+1)
i) =

Bi(ωs) ·∆s󰁕
S
Bi(s)2 ds

+ b
(k)
i (7.10)

Welford's algorithm [57] is a numerically stable algorithm for computing themean and

variance of some sample set. At each step, the mean µ is updated with a new sample s as

follows:

µ(k+1) = µ(k) +
s− µ(k)

k
(7.11)

Therefore, to accumulate the various Monte Carlo estimates for b (which is simply a

matter of averaging the estimates for each sample given uniform random sampling), we

can apply:

b
(k+1)
i = b

(k)
i +

1

k
(
Bi(ωs) ·∆s󰁕
S
Bi(s)2 ds

+ b
(k)
i − b

(k)
i) (7.12)

= b
(k)
i +

1

k
(
Bi(ωs) ·∆s󰁕
S
Bi(s)2 ds

) (7.13)

This method will iteratively converge to the least-squares solution for b. The speed of

its convergence depends on the sample distribution, the initial estimates, and an accelera-

tion factor α. It turns out to be possible to increase the convergence rate at the method at

the cost of increased visible noise during the solve (since the solution will overshoot and

correct itself) by performing, at each step:

b
(k+1)
i = b

(k)
i +

α

k
(
Bi(ωs) ·∆s󰁕
S
Bi(s)2 ds

) (7.14)

A reasonable range for α is between 1 and 5. In my tests, I found α = 3 to provide the

quickest convergence in a range of scenarios.

7.3.1 Notes and Limitations

This technique is conditional upon the distribution of the incoming radiance samples.

If the sample directions are uniformly randomly distributed then the resultwill converge to

the minimummean-squared error; however, if the sample directions are highly correlated

the result will be very poor. Fortunately, we naturally want the sampling pattern to be un-

correlated inmost contexts where we are accumulating radiance samples progressively; in

path tracing, for instance, stratified sampling is often used to ensure that successive sam-

ples are not over-representative of a particular direction. Note also that progressive sample

sequences that converge quickly within the first few samples are ideal (Section 6.2), while

sample sets such as Hammersley [39] that only cover the sample space once all samples

have been taken are very poor choices.

It is also conditional upon the convergence of Jacobi or Gauss-Seidel iteration given a

particular basis function. Jacobi iteration is known to converge when the system is diago-

nally dominant; in this case, that means:

󰁝

S

Bi(s)
2 ds >

󰁛

j,j ∕=i

|
󰁝

S

Bi(s)Bj(s)ds|

although it may also converge under other conditions. Gauss-Seidel iteration, on the

other hand, will converge in any casewhere theGrammatrix is symmetric andpositive def-

inite, whichwill always be the case if the basis functions are strictly positive-valued. Under

both Jacobi and Gauss-Seidel iteration a more diagonally dominant matrix will converge

quicker than a less diagonally dominant one. More practically speaking, the greater over-

lap there is between the basis functions the slower the system will converge; very wide

spherical Gaussian lobes, for example, cause issues for this method. In practice, in these

cases the method will often achieve a reasonably good result but then asymptotically de-

crease the rate of convergence, requiring a very high sample count to fully converge.

To use Gauss-Seidel rather than Jacobi iteration within this encoding method we need

to update the value of∆ after solving for every lobe:

∆
(k+1)
i+1 = ∆

(k+1)
i + b

(k)
i Bi(ω)− b

(k+1)
i Bi(ω)

= ∆
(k+1)
i + (b

(k+1)
i − α

k
(
Bi(ω) ·∆(k+1)

i󰁕
S
Bi(s)2 ds

))Bi(ω)− b
(k+1)
i Bi(ω)

= ∆
(k+1)
i − α

k
(
Bi(ω) ·∆(k+1)

i󰁕
S
Bi(s)2 ds

)Bi(ω)

= ∆
(k+1)
i (1− α

k

Bi(ω)
2

󰁕
S
Bi(s)2 ds

)

Given those conditions and usingGauss-Seidel iteration this algorithmwill always con-

verge to the least-squares solution in the unconstrained case. As a rough heuristic, this

progressive least-squares algorithm exhibits similar error to performing somewhere be-

tween five and eight iterations of the Gauss-Seidel algorithm on the full system set up in

a functional-analysis least-squares manner (i.e. Gb = m, where G is the Gram matrix, b is

the weight vector, and m is the vector of projected moments). This is true regardless of

whether Gauss-Seidel or Jacobi iteration is used within the algorithm; however, this algo-

rithm will only converge using Jacobi iteration in situations where Jacobi iteration on the

full system would converge.

Extra constraints may be introduced by projecting the basis amplitude onto those con-

straints after every iteration; for example, a non-negative solve can be achieved by clamp-

ing the amplitude to be non-negative after each sample is added. Doing somay prevent the

system from ever reaching the true value and has no formal mathematical basis, although

intuitively you can reason that subsequent samples will compensate for the constraint in

their solve. In practice, the results from non-negative clamping come very close to those

achieved using a dedicated non-negative solver on the full system.

Special care must be taken in evaluating the denominator I =
󰁕
S
Bi(s)

2 ds. As already

mentioned, the denominator should be computed in lockstepwith the numerator; as each

basis function's weight Bi(ω) is evaluated, the value of I should be updated to be the aver-

age of all Bi(ω)
2 values encountered thus far. However, for low sample counts, the b esti-

mate will be very noisy, and, since the range of Bi is often [0, 1] for many basis functions,

noise in the estimate can be greatly amplified by noise in I.

I have found two effective methods tomitigate this. The first is to clamp the value used

in the denominator for calculating bi to at least the true value of I ; however, this requires

precomputing I . The second method, which has slightly lower error on my test sets, is to

interpolate from the value of I used in the naïve projection – that is, 1 – to the true value

based on the sample index k:

I
(k)
i =

1

k
+ (1− 1

k
) · 1

k

k󰁛

j=1

Bi(ωj)
2 (7.15)

If the incoming sample directions are defined uniformly over the hemisphere (as is the

case in lightmap baking) but the integration domain should be over the sphere, additional

samples should be added after each true samplewith a direction opposite the upper hemi-

sphere direction and a radiance value of zero.

Listing 7.1: Progressive Least-Squares Encoding
float lobeMCSphericalIntegrals[lobeCount] = 0.f;
float totalSampleWeight = 0.f;

for sample in radianceSamples {
totalSampleWeight += sample.weight;
float sampleWeightScale = 1.f / totalSampleWeight;
Colour delta = sample.value;
float sampleLobeWeights[lobeCount];

for lobeIndex in 0..<lobeCount {
float weight = lobes[lobeIndex].evaluateBasis(sample.direction);

delta -= lobes[lobeIndex].amplitude * weight;
sampleLobeWeights[lobeIt] = weight;

}

for lobeIndex in 0..<lobeCount {
float weight = sampleLobeWeights[lobeIndex];
float sphericalIntegralGuess = weight * weight;
lobeMCSphericalIntegrals[i] += (sphericalIntegralGuess -

lobeMCSphericalIntegrals[i]) * sampleWeightScale;

float basisSphericalIntegral = sampleWeightScale + (1.f -
sampleWeightScale * lobeMCSphericalIntegrals[i]);

float deltaScale = acceleration * weight * sampleWeightScale /
basisSphericalIntegral;

lobes[lobeIndex].amplitude += delta * deltaScale;

if nonNegativeSolve {
lobes[lobeIndex].amplitude = max(lobes[lobeIndex].amplitude, Colour(0));

}

// If we want to perform Gauss-Seidel iteration:
delta *= 1.0 - deltaScale * weight;

}
}

7.3.2 Implementation

This method has been implemented and tested across a range of different software on

both the CPU and GPU. Initial prototyping was done within the open source tool Probu-

lator [87], and was later tested within the open source tool The Baking Lab [18]; the GPU

implementation was tested within LlamaEngine (Appendix B.1).

For the GPU implementation, samples were traced from locations in a lightmap and

were accumulated into a 32-bit float RGBA render target per basis function, with the spher-

ical integral I stored in the alpha channels. A single-channel 32-bit float render target was

also used to store the total accumulated sample weight since the sample count varies per

texel and results are splatted across multiple texels using filtered weights.

In lightmap tracing contexts, the current lobe amplitudes should be point-sampled for

the texel being solved for. Although it may seem more correct to linearly filter the lobe

amplitudes when the ray originates near an edge or corner of the texel, doing so causes

lobes to use their neighbours to minimise the error, resulting in a noisy checkerboard-like

pattern.

Care must be taken in regards to the storage of the intermediate weight vector b. In

particular, 16-bit floating point is insufficiently precise to capture the minute adjustments

to the weights and will cause biasing towards large sample values. In my implementation,

all intermediate results were stored in 32-bit floating point; preliminary tests done with

64-bit floating point showed minimal improvement in accuracy over 32-bit.

7.3.3 Results

Figure 7.5 shows a comparison of the naïve, functional-analysis least-squares, and pro-

gressive least-squares encoding methods, showing the close match achieved by progres-

sive-least-squares. Figure 7.6 shows how encoding quality is negatively impacted by the

use of a sample set rather than sequence, while Figure 7.7 demonstrates the close prox-

imity of the progressive non-negative solve to the true value. An example of convergence

compared with the least-squares solution is given in Figure 7.8.

Figure 7.5: Comparison of the naïve projection, least-squares, and progressive least-
-squares encoding methods.

(a) TheWells HDR environment map [85]. (b)Naïve projection onto 12 spherical Gaussian
lobes (RMSE: 0.470525).

(c) A least-squares fit with 12 spherical Gaus-
sian lobes (RMSE: 0.455862).

(d) Progressive least-squares encoding using 12
spherical Gaussian lobes (RMSE: 0.455971).

Figure 7.6: Progressive least-squares encoding with correlated vs. decorrelated samples.

(a) Progressive least-squares encoding with
samples from the Halton 2-3 sequence.

(b) Progressive least-squares encoding with
correlated samples from the Hammersley set
[39].

Figure 7.7: Progressive least-squares encoding with negative vs. non-negative lobe ampli-
tudes.

(a) The Uffizi HDR environment map [88]. (b) A least-squares fit using 12 spherical Gaus-
sian lobes (RMSE: 3.07549).

(c) A non-negative least-squares fit using 12
spherical Gaussian lobes (RMSE: 3.13181).

(d) Progressive non-negative least-squares
encoding using 12 spherical Gaussian lobes
(RMSE: 3.13928).

Figure 7.8: Convergence rate of the progressive least-squares encoding method.

Least-Squares Progressive Least-Squares

32 Samples

RMSE 0.566 0.601

64 Samples

RMSE 0.495 0.507

128 Samples

RMSE 0.472 0.493

256 Samples

RMSE 0.462 0.472

512 Samples

RMSE 0.461 0.461

Wells HDR environment map [85] with twelve spherical Gaussian lobes (λ = 8)

7.4 EncodingBRDF-WeightedSphericalBasisFunctions

from Radiance Signals

In addition to encoding radiance directly into linear bases, it is also possible to en-

code a BRDF-convolved signal. For example, you may wish to have a basis function store

cosine-weighted irradiance rather than radiance so that you can directly query the irradi-

ance. This is particularly useful for basis functions such as Ambient Dice (Section 8.3) [12],

which have local support (that is, different directions fetch different sets of coefficients).

Onemethod of doing this is to project the radiance signal into some intermediate basis

in which the convolution can be efficiently performed. For example, in Ambient Dice Iwan-

icki and Sloan project the radiance signal into high-order spherical harmonics, in which

cosine-lobe convolution can be efficiently performed, and then encode the convolved sig-

nal into the final basis function. As they note, “For very fine functions this is somewhat

impractical, since a very high order SH expansion would have to be used.” This section

will show how this general method – projecting into one basis, convolving with the BRDF,

and then projecting into the final basis – can be applied to any spherical basis function,

and not just spherical harmonics.

First, note that a signal, represented as a linear combination of basis functions, can

be projected into some new space by a matrix multiplication of the amplitudes of the ba-

sis functions in the original space. Practically speaking, this matrix multiplication can be

folded directly into the solve by multiplying with the inverse Grammatrix.

Consider Equation 7.2 where the function value f(s) is the convolution of R(ω) and a

symmetric function4 C(ωi,ωo):

min
󰁝

S

󰀓󰁓
i biBi(s)−

󰁕
S
(R(ω) · C(ω, s))dω

󰀔2

ds (7.16)

Let R(s) be the radiance signal represented by some linear combination of basis func-

tions:

R(ω) =
󰁛

k

akAk(ω) (7.17)

We can then reformulate the least-squares equation as:

4A symmetric function here means a function for which C(ωi,ωo) has the same value as C(ωo,ωi).

min
󰁝

S

󰀓󰁓
i biBi(s)−

󰁓
k ak

󰁕
S
(C(ω, s)Ak(ω))dω

󰀔2

ds (7.18)

Solving this equation in the same manner as before yields:

󰁛

j

bj

󰁝

S

(Bi(s) · Bj(s))ds =
󰁛

k

ak

󰁝

S

(Bi(s) ·
󰁝

S

(C(ω, s)Ak(ω))dω)ds (7.19)

On the left we have our familiar Gram matrix Gij =
󰁕
S
(Bi(s) · Bj(s))ds multiplied by

the target amplitude vector b. On the right we have the original basis amplitudes vector a

multiplied by a projection matrix P , where:

Pij =

󰁝

S

(Bi(s) ·
󰁝

S

(C(ω, s)Aj(ω))dω)ds (7.20)

The final projected values after convolution with C(ωi,ωo) are given by:

b = G−1 × P × a (7.21)

If we instead have a vector of raw moments m which have been projected against the

basis functions of A, this becomes:

b = (G−1
B × P ×G−1

A)×m (7.22)

This can be folded into a singlematrixmultiplication, where thematrix, (G−1
B ×P×G−1

A),

is precomputed offline.

In practice, P can be generated through Monte Carlo integration. In a primary loop,

a number of pseudo-random sample directions on the unit sphere are generated, and

Bi(s) is evaluated for each i. Then, for each primary sample direction s, the value of Ij =
󰁕
S
(C(ω, s)Aj(ω))dω is computed for each j throughMonte Carlo integration; in most cases

this can be done by importance sampling C(ω, s) for ω. The product of Bi and Ij for each i

and j can then be added, averaging over all primary sample directions to produce the final

projection matrix P .

If the integration domain is defined to be over the hemisphere rather than the sphere,

the integration of both the basis function and the BRDF must be defined over that hemi-

sphere. In practice, this means that any directions importance sampled from the BRDF

that point outside the hemisphere must have a weight of zero; this is equivalent to uni-

formly sampling the hemisphere and weighting by the BRDF but converges more quickly.

Note that for specular BRDFs such as GGX C(ω, s) can be formed by fixing the rough-

ness α and either the view or normal direction (for example, to parameterise the encoded

function by the view direction around a fixed normal of (0, 0, 1), or to instead isotropically

parameterise by assuming the view direction is always aligned with the normal).

The choice of source basisA determines how accurately the encoded signal inB recon-

structs the original signal. Put another way, if b is intended to represent the convolution of

the original signal f(s) with some BRDF C(ω, s), the accuracy of this method depends on

howwell
󰁓

i aiAi(s) represents the original radiance signal. ForAmbientDice, for example,

the quality loss of using the same basis to store the intermediate radiance is minimal (at

most around 15% increased RMSE for diffuse) since BRDFs blur the result; a comparison

is shown in (c) and (d) of Figure 7.9.

Spherical harmonics (Section 8.1) are an orthonormal basis function. In the case of

orthornormal basis functions, the GrammatrixG and its inverseG−1 are both the identity

matrix, and the projection matrix P is a diagonal matrix. This is why spherical harmonics

can be efficiently convolved with the Lambertian diffuse BRDF: multiplication of the basis

coefficients b by G−1
B × P requires only multiplication along the non-zero diagonal.

An alternative approach to using the projection matrix, suitable for use with the pro-

gressive least-squares encoding technique, is to project each radiance signal into the target

space during the solve. For each sample s with direction ωs, a random BRDF importance

sampled direction ωr on the hemisphere of ωs is chosen. The radiance signal is then mul-

tiplied by the BRDF, given a normal of ωr and a light direction of ωs, and ωr is used as the

direction in which to evaluate the basis functions. This technique is necessarily noisier

than a proper projection since we are discarding much of the information from each radi-

ance signal – namely, the product of that signal with the BRDF evaluated with every other

possible normal direction – but the cost is lower than the full matrix multiplication and

non-negative solves are supported.

Figure 7.9: Comparison of Ambient Dice SRBF (Section 8.3) Lambertian irradiance repre-
sentations on the Wells HDR environment map [85]

(a) Monte Carlo importance sampled irradi-
ance

(b) Diffuse polynomial fit (Section 8.14) to a
radiance Ambient Dice (twelve-lobe support)
[RMSE: 0.00735]

(c) Irradiance-encoding Ambient Dice gener-
ated by directly solving for the ground truth ir-
radiance (six-lobe support) [RMSE: 0.00964]

(d) Irradiance-encoding Ambient Dice gener-
ated by projecting from a radiance-encoding
Ambient Dice SRBF (six-lobe support, Section
7.4) [RMSE: 0.00976]

Chapter 8

Families of Spherical Basis Functions

Given a method for encoding spherical basis functions (Chapter 7), the next decision to

be made is which spherical basis function to encode into. An overview of prior work is

given in Section 2.2. Rather than trying to comprehensively evaluate those methods in

comparison with each other, this chapter will focus in on two particular families of basis

function: spherical Gaussians [9] and Ambient Dice [12]. These two families are of par-

ticular interest due to their ability to reasonably accurately approximate indirect specular

highlights, providing high visual quality at the cost of increased storage requirements and

(in the case of spherical Gaussians) increased computational overhead. In addition, a brief

overview of spherical harmonics is given due to their ubiquity and their unique property

of orthonormality in the context of Section 7.4.

It should be noted that the ability for Ambient Dice to represent indirect specular is a

novel and notable contribution of this work. In addition, the method by which Ambient

Dice can represent indirect specular may be useful and applicable to a wide range of basis

functions in future work.

8.1 Spherical Harmonics

Spherical harmonics (introduced in the context of lighting by Ramamoorthi and Han-

rahan in 2001 [27] and used fairly ubiquitously since then) are a family of basis functions

that have the useful property that all of its functions are orthonormal over a sphere.1 Or-
1 Technically, the family of spherical harmonics that are orthonormal are known as Laplace's spherical har-
monics; in general, when we refer to spherical harmonics in the context of lighting we mean Laplace's
spherical harmonics.

127

thonormality means that for any two basis functions Bi(s) and Bj(s) in this family:
󰁝

S

Bi(s)Bj(s)ds =

󰀻
󰁁󰀿

󰁁󰀽

1 i = j

0 otherwise
(8.1)

In following with the definition of the Gram matrix from Section 7.2, note that this

means the Gram matrix for any combination of spherical harmonics is the identity ma-

trix. For this reason, performing least-squares encoding with spherical harmonic basis

functions amounts to simply projecting the function values onto the basis functions. This

orthonormality also has other useful properties; for example, convolution with the cosine

function over the hemisphere can be done as a simple dot product (i.e. element-wise mul-

tiplying the basis coefficient vector b by the cosine convolution vector c), as discussed in

Section 7.4.

Spherical harmonics are separated into bands, where each successive band contains

higher-frequency information and requires a greater number of coefficients. The first band

is simply a constant term, representing the average value over the entire sphere; the second

band's basis functions are defined to represent the three components of a 3D direction

vector, where one coefficient is required per component.

Due to the increasing number of coefficients required to represent high-frequency de-

tail, spherical harmonics are usually used exclusively to represent diffuse lighting, which

the first three bands (i.e. the first nine basis functions) represent very accurately [27]. In

order to represent higher-frequency functions such as specular response, however, other

families of basis functions are more useful.

In addition, since the basis functions for spherical harmonics differ with each band,

the evaluation of each basis function (including for BRDF convolution) is different for each

band. By contrast, bases comprised of radial basis functions in varying directions can be

evaluated in the same manner for every basis component function, including for BRDF

evaluation.

8.2 Spherical Gaussians

Spherical Gaussians (SGs) are spherical functions that can be used as part of a linear

basis. Introduced byWang et. al. in 2009 [9], spherical Gaussians were first adapted as an

alternative to spherical harmonics in irradiance volumes and lightmaps by Pettineo and

Neubelt, who presented their work in Advanced Lighting R&D at Ready At Dawn Studios at

SIGGRAPH 2015 [10]. They are parameterised by three variables: µ, the amplitude; the

lobe axis vector 󰂓p; and the lobe sharpness, λ. Radiance over a spherical or hemispherical

domain is often defined as the sumof a set of spherical Gaussian lobes, with the evaluation

of a lobe in a particular direction defined as:

G(󰂓ω; 󰂓p,λ, µ) = µeλ(󰂓ω·󰂓p−1) (8.2)

The core advantage of spherical Gaussians over spherical harmonics is their ability

to represent relatively high-frequency detail in fewer coefficients than spherical harmon-

ics would necessitate. This enables spherical Gaussians to be used for representing indi-

rect specular illumination, yielding plausible results for rough surfaces with wide specular

lobes.

Spherical Gaussians are isotropic, meaning that they are a poor fit for anisotropic spec-

ular lobes such as those generated by the commonly-used Trowbridge-Reitz (GGX) distri-

bution [89]. In 2013, Xu et. al. introduced Anisotropic Spherical Gaussians (ASGs) [90]

which can much more closely fit anisotropic specular lobes. ASGs can be convolved with

spherical Gaussian light sources, enabling lighting to be stored as a sum of SG lobes while

still being evaluated for an anisotropic specular lobe.

In general, spherical Gaussians are stored as a set of lobes representing radiance, which

can then be used to reconstruct either diffuse irradiance or specular. In my implementa-

tion, ASGs are used for specular reconstruction as perPettineo andNeubelt, and for diffuse

reconstruction I make use of Stephen Hill's irradiance curve fit [91].

Following Pettineo and Neubelt, I form a linear basis of spherical Gaussians by fixing

the lobe directions evenly around a sphere or hemisphere and experimentally selecting a

lobe sharpness. Although this biases the directionality of light sources towards the lobe

directions, it doesmean that only one coefficient per colour channel needs to be stored for

each lobe, whereas including lobe directions and sharpnesses would double the storage

and bandwidth costs.

8.3 Ambient Dice

Ambient Dice are a recent representation for signals on a unit sphere. Introduced by

Iwanicki and Sloan in 2017 [12], Ambient Dice can represent irradiance signals with an ac-

curacy between L3 and L4 spherical harmonics at substantially lower bandwidth cost.

In Ambient Dice, Iwanicki and Sloan presented two main separate variants of the ba-

sis using different reconstruction methods. The first, hybrid Bézier patch reconstruction,

consists of locally-supported basis functions and has a high ALU2, bandwidth, and stor-

age cost, but excellent quality; the second method uses a mixture of cos2 and cos4 lobes,

with significantly lower ALU and bandwidth costs but also lower quality, particularly on

high-frequency signals.3 As a third alternative, they also propose encoding only luminance

using the firstmethod andusing spherical linear interpolation for the chrominance, result-

ing in lower bandwidth cost than either representation but ALU cost near-identical to the

Bézier patch.

These reconstruction methods are applied to the twelve vertices of a regular icosahe-

dron (e.g. a twenty-sided die). For the Bézier patch variant, every direction lies on one of

the twenty triangles formed by these vertices, and only the three vertices that comprise

each triangle need to have data fetched to reconstruct the value. For the cosine-lobe vari-

ant, the six vertices lying on the same hemisphere as the direction being queried all need

to be fetched. Offsetting that cost is the fact that the cosine-lobe variant requires only a

single value per colour channel to be stored at each vertex, whereas the Bézier patch needs

three: the value and two directional derivatives in perpendicular directions.

The cosine-lobe basis functions are defined as:

CosineLobe(x) = 0.7× 1

2
x2 + 0.3× 5

6
x4 (8.3)

Bi(s) =

󰀻
󰁁󰀿

󰁁󰀽

CosineLobe(cos(ω)), cos(ω) ≥ 0

0, otherwise
(8.4)

2 ALU refers to the number of instructions that use the arithmetic logic unit on the GPU and the cost of those
instructions.

3 This cosine-lobe basis function is a special case of axial moments, as introduced by Arvo in 1995 [92]. More
recently, axial moments have seen use in approximating lighting due to clipped polygons (Belcour et. al.
2018) [93].

where cos(ω) is the dot product between the normalised icosahedron vertex direction

vi and the sample direction s. Note that this basis function, when used with lobes aligned

with the vertices of an icosahedron, forms a partition of unity; at every point on the sphere

the unscaled basis functions' values add up to one. In addition, each component of the

basis function – 1
2
x2 and 5

6
x4 – also independently forms a partition of unity; therefore, this

basis function is just one possible blend of the two components, and was chosen by Sloan

and Iwanicki as providing the best appearance.

The hybrid Bézier patch's basis functions aremore complex; for a full description, refer

to Iwanicki and Sloan's original paper [12]. I also hope to contribute an implementation to

the open source Probulator tool [87] in the near future.

Unlike spherical Gaussians, the Ambient Dice family of basis functions was, in prior

work, used to directly encode the signal to be reconstructed: rather than reconstructing

irradiance from a set of radiance lobes (as is done with spherical Gaussians), irradiance

is directly stored, and likewise for any other signal. This is particularly important for the

Bézier patch variant, which relies on local support to be efficient; reconstructing a diffuse

or rough specular signal implies fetching data from over a hemisphere and is prohibitively

expensive in bandwidth.

Ambient Dice are defined over the sphere, making them seemingly less suitable for

encoding hemispherical signals. However, it is worth noting that the locally-supported

Bézier patch variant requires only nine vertices to be stored when representing signals

defined on a hemisphere since the other three vertices will always have zero contribution.

In the remainder of this chapter, I will propose a number of new uses for the cosine

lobe variant of Ambient Dice. In particular, I will providemethods for evaluating diffuse or

specular irradiance directly from a radiance-encoding Ambient Dice, mirroring the func-

tionality of spherical Gaussians at higher quality and lower computational cost.

8.3.1 Ambient Dice's Cosine-Lobe Basis on the Hemisphere

In addition to being distributed over the sphere, it is also possible to use the cosine-lobe

basis functions in an arrangement targeting the hemisphere. For example, we can omit the

three vertices that are unused in theBézier configuration to yield anine-vertex basis. While

these vertices would have a non-zero contribution in the globally-supported cosine-lobe

variant, their contribution is expected to benegligible since they primarily support the zero

values on the negative hemisphere.

Using the Bi(s) defined in Equation 8.3, we can define the basis vertices v to be:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

v1

v2

v3

v4

v5

v6

v7

v8

v9

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0.5257 −0.3035 0.7947

−0.5257 −0.3035 0.7947

0.0 0.6071 0.7947

0.8507 0.4911 0.1876

−0.8507 0.4911 0.1876

0.0 −0.9822 0.1876

−0.8507 −0.4911 −0.1876

0.8507 −0.4911 −0.1876

0.0 0.9822 −0.1876

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

These vertices have been rotated from the original Ambient Dice configuration so that

their average value is oriented towards (0, 0, 1). Using this configuration rather than ver-

tices chosen from the upper hemisphere of Vogel's sphere as is done in Probulator [87]

reduces diffuse irradiance reconstruction error by a factor of around five on a range of

environment maps.

8.3.2 Relationship to Spherical Gaussians

In prior work, the lobe directions for spherical Gaussians were chosen by sampling

Vogel's sphere, forming a spiral-like shape; then, the lobe sharpnesses were more or less

arbitrary. However, it turns out that spherical Gaussians can form a reasonable approxi-

mation to the cosine-lobe variant of Ambient Dice, and that this approximation improves

the quality of irradiance reconstruction from radiance-encoding SG lobes. On the 'pisa'

HDR environment map [88], for example, the RMSE of spherical Gaussians using Vogel's

sphere directions is 0.00828, whereas using icosahedron directions lowers it to 0.00576.

If, in addition to choosing the lobe directions, the lobe sharpness λ is chosen such that

the shape of the Gaussian approximates that of the cosine-lobe variant of Ambient Dice,

the irradiance reconstruction error can be lowered further, at the cost of diffused and less

accurate specular. A value of around λ = 3.4 is a good fit, depending on which part of the

curve you wish to fit most closely (Figure 8.1).

It is also possible to convert between Ambient Dice and spherical Gaussians with fixed

Figure 8.1: A spherical Gaussian lobe with λ = 3.4 (green) against the cosine-lobe variant
of Ambient Dice (blue).

Note the longer tail of the spherical Gaussian lobe, which continues to be positive-valued over
the entire sphere, whereas the cosine lobe has no influence at angles past π

2
.

lobes in the same way as between any other linear bases; the method in Section 7.4 for

convolving with an arbitrary BRDF applies where the BRDF is a delta function such that:

C(ω, s) =

󰀻
󰁁󰀿

󰁁󰀽

1 ω = s

0 otherwise
(8.5)

8.4 Evaluating BRDFs from Radiance Ambient Dice

Rather than converting a radiance-encoding Ambient Dice into one that represents the

BRDF-weighted irradiance (Section 7.4), it is also possible to directly evaluate the radi-

ance-encoding Ambient Dice for the irradiance. This is mostly useful when you want to

store a single representation for radiance and evaluate multiple BRDFs from it.

Consider that the irradiance I(ωo) is the integral over the hemisphere surrounding ωo

of the radiance multiplied by the BRDF fbr(ωi,ωo). When using a linear basis to represent

radiance, this becomes:

I(ωo) =

󰁝

Ω

󰁛

j

bjBj(ωi)fbr(ωi)dωi (8.6)

=
󰁛

j

bj

󰁝

Ω

Bj(ωi)fbr(ωi)dωi (8.7)

=
󰁛

j

bjCj(ωo),where Cj(ωo) =

󰁝

Ω

Bj(ωi)fbr(ωi)dωi (8.8)

This doesmean that the Ambient Dicemust be evaluated with global support; whereas

AmbientDice generally have local support (the six lobeson thehemisphere for the cosine-lobe

variant or the three vertices of each triangle for the Bézier patch variant), the BRDF col-

lects radiance from over a hemisphere and therefore gathers irradiance either globally (for

the cosine-lobe) or near-globally (for the Bézier patch). Due to the number of coefficients

required for the Bézier patch, this approach is therefore only practical for the cosine-lobe

variant.

The fits described in this sectionwill, unless otherwise specified, assume that the basis

functions are defined over the sphere. Defining the basis functions over the hemisphere

requires that the fits consider not only the proximity of the sample direction to each lobe

but also how much the basis-scaled BRDF lobe will be clipped by the hemisphere, which

is more difficult to compute.

8.4.1 Diffuse Reconstruction from Cosine-Lobe Ambient Dice

If we restrict ourselves to the cosine-lobe variant of Ambient Dice and a Lambertian

BRDF (Equation 8.3), the diffuse irradiance from each lobe is analytically evaluable. Given

the angle θlobe between a given lobe vi and the normal direction ωo, the irradiance over the

hemisphere Ω centred on ωo is given by:

Ii(ωo) =

󰁝

Ω

Bi(s)
ωo · s
π

ds

=

󰁝

Ω

C(max(cos(θlobe))
ωo · s
π

ds

=

󰁝

Ω

(0.35×max(cos(θlobe), 0)2 + 0.25×max(cos(θlobe), 0)4)
ωo · s
π

ds

This must be evaluated as a surface integral over the hemisphere Ω. The coordinate

spacewill be defined such that the Cartesian coordinates of a spherical pair (φ, θ) are given

by:

Cartesian(θ,φ) = (sin(θ) sin(φ), sin(θ) cos(φ), cos(θ)) (8.9)

Let the lobe direction in this coordinate space be determined by the angle with the

normal θlobe and correspond to:

lobeDirection = (sin(θlobe), 0, cos(θlobe)) (8.10)

Due to the clamped cosine, the integration bounds must be set carefully. Translated

into a surface integral on the hemisphere we can see that there are two cases: one where

θlobe is greater than π
2
, in which case it only intersects the right half of the hemisphere, and

one where θlobe is less than π
2
, in which case the integral intersects both the left and right

halves.

The first case is the most straightforward, where the irradiance Ii is given by:

dot(θ,φ, θlobe) = sin(θlobe) sin(θ) sin(φ) + cos(θlobe) cos(φ)

Ii(θlobe) =

󰁝 π

0

󰁝 π
2

θlobe−π
2

C(dot(θ,φ, θlobe))
cos(θ)

π
dθdφ , where θlobe >

π

2

The definition for dot(θ,φ, θlobe) falls out of the definition of the dot product in our coor-

dinate space, and is equal to the cosine of the angle between (θ,φ) and the lobe direction.

With the help of MATLAB [94] or a similar symbolic computing tool, we can see that

Ii(θlobe) comes out to be:

Ii(θlobe) =
1167 cos (6 θlobe)

163840
− 313 cos (4 θlobe)

61440
− 8959 cos (2 θlobe)

245760
+

5 cos (8 θlobe)
49152

− 35 cos (10 θlobe)
98304

+
67 sin (2 θlobe)

960
+

sin (4 θlobe)

384
+

113 cos (2 θlobe)
5760 π

− cos (4 θlobe)
576 π

− 53 cos (6 θlobe)
2560 π

− cos (8 θlobe)
4608 π

+
5 cos (10 θlobe)

4608 π

+
1

512 π
+

67 atan
󰀕√

2
󰀓
cos

󰀓
θlobe

2

󰀔
−sin

󰀓
θlobe

2

󰀔󰀔

2 cos
󰀓

θlobe
2

−π
4

󰀔

󰀖
sin (2 θlobe)

240 π

+

atan
󰀕√

2
󰀓
cos

󰀓
θlobe

2

󰀔
−sin

󰀓
θlobe

2

󰀔󰀔

2 cos
󰀓

θlobe
2

−π
4

󰀔

󰀖
sin (4 θlobe)

96 π
+

2841

81920
, where θlobe ≥

π

2

(8.11)

When θlobe is less than π
2
and therefore intersects both halves of the hemisphere, the

integral is made up of two components:

Ii(θlobe) =

󰁝 π

0

󰁝 π
2

0

C(dot(θ,φ, θlobe))
cos(θ)

π
dθdφ, representing the right hemisphere

+

󰁝 π

0

󰁝 π
2
−θlobe

0

C(dot(−θ,φ, θlobe))
cos(θ)

π
dθdφ, representing the left hemisphere

where θlobe <
π

2

(8.12)

This evaluates to:

Ii(θlobe) =
3 cos (θlobe)2

40
+

41 cos (θlobe)4

192
+

63 cos (θlobe)6

320
− 15 cos (θlobe)8

32

+
35 cos (θlobe)10

192
+

31 cos (θlobe)2

120 π
− 23 cos (θlobe)4

45 π
− 73 cos (θlobe)6

120 π

+
17 cos (θlobe)8

12 π
− 5 cos (θlobe)10

9 π
+

31 θlobe cos (θlobe) sin (θlobe)

120 π

+
θlobe cos (θlobe)3 sin (θlobe)

24 π
+

19

320
, where θlobe <

π

2

(8.13)

Figure 8.2: The imperceptibly-different quadratic curve fit Ii approx(θlobe) (black) against the
true value of Ii(θlobe) (blue) for radiance-encoding cosine-lobe Ambient Dice, where the
horizontal axis is cos(θ).

Polynomial Approximation to the Integral

Instead of using this expensive analytic solution, we can also find a very close quadratic

fit (shown in Figure 8.2) to Ii(θlobe)which is parameterised by the angle between each vertex

and the normal θlobe:

Ii approx(θlobe) = 0.05981 + 0.12918 cos(θlobe) + 0.07056 cos2(θlobe) (8.14)

The Lambertian irradiance in direction ω then becomes:

I(ωo) =
󰁛

i

biIi(dot(ωo, vi)) (8.15)

where vi is the normalised direction and bi is the radiance-encoded basis amplitude for

the ith Ambient Dice vertex.

8.4.2 Specular Reconstruction from Cosine-Lobe Ambient Dice

In this section, amethod for approximating the specular contribution from the cosine-lobe

Ambient Dice basis function is provided. The method is simple to implement, requires lit-

tle ALU, and needs only one additional texture lookup in addition to retrieving the per-lobe

amplitudes. The error of the approximation over the parameter space is shown in Figures

8.3 and 8.4.

The approximation is made for the commonly-used single-scattering GGX specular

model using the Smith height-correlated masking-shadowing function; see Understand-

ing the Masking-Shadowing Function in Microfacet-Based BRDFs by Heitz (2014) for details

[95]. However, the methodology may be applicable to a wide range of BRDFs and basis

Figure 8.3: Specular response from an Ambient Dice cosine lobe for single-scattering
GGX.

(1
8)

2

(2
8)

2

(3
8)

2

(4
8)

2

(5
8)

2

(6
8)

2

(7
8)

2

1

0 cos−1 (0.75) cos−1 (0.5) cos−1 (0.25) π cos−1 (−0.25) cos−1 (−0.5) cos−1 (−0.75)

θlobe =

α =

(a) Ground-truth response.

(1
8)

2

(2
8)

2

(3
8)

2

(4
8)

2

(5
8)

2

(6
8)

2

(7
8)

2

1

0 cos−1 (0.75) cos−1 (0.5) cos−1 (0.25) π cos−1 (−0.25) cos−1 (−0.5) cos−1 (−0.75)

θlobe =

α =

(b) Approximation with a 2D LUT and curve fit.

The f0 scale is in red and the f90 scale is in blue. The position on each sphere indicates the
viewing direction.

RMSE of the approximation over the parameter space is 0.00749, with a maximum deviation
from the true value of 0.0708.

Figure 8.4: Absolute difference between the ground truth and the 2D LUT approximation
for the specular response from an Ambient Dice cosine lobe with single-scattering GGX,
with exposure increased by 2 EV.

(1
8)

2

(2
8)

2

(3
8)

2

(4
8)

2

(5
8)

2

(6
8)

2

(7
8)

2

1

0 cos−1 (0.75) cos−1 (0.5) cos−1 (0.25) π cos−1 (−0.25) cos−1 (−0.5) cos−1 (−0.75)

θlobe =

α =

functions; in particular, an extension to multi-scattering GGX, while not provided here, is

expected to be reasonably trivial.

In general, finding the integral of a specular BRDF with illumination from an arbitrary

basis function is a non-trivial problem due to the large number of free parameters. For a

general specular model parameterised by some isotropic roughness α, normal direction

n, and reflectance at normal and grazing angles f0 and f90, the illumination from a light

source in some linear basis is given by:

Cj(ωo) =

󰁝

Ω

Bi(ωi)fbr(α,ωi,ωo, n, f0, f90)dωi (8.16)

The contribution of a linear combination of lobes in that basis Ii(ωo) is a linear combi-

nation of Cj for each j (in other words, it is a weighted sum of each lobe's Cj) and is given

by Equation 8.8.

Solving this integral analytically is challenging, and in many cases there may be no

closed form solution. Instead, we are left with two options: for offline rendering, the inte-

gral may be evaluated using Monte Carlo integration, while for real-time, a fitted approxi-

mation or some look-up table should be used. Note that using Monte Carlo integration is

overly expensive for real-time applications; visual artefacts are still readily apparent with

as many as 32 samples when estimating Ii(ωo).

Capturing the response of Ii(ωo) in a fitted function is a difficult task in itself; there are a

large number of input parameters which all affect the output in significant ways. However,

there are two key observations that serve as a useful starting point:

• For a perfectly smooth specular reflector with α approaching zero, the BRDF be-

comes a delta function oriented in the surface's reflection direction (given the view

direction). The radiance in this case is therefore simply the basis function evaluated

in the reflection direction multiplied by the Fresnel response.

• For a very rough surface, the specular response will approach a Lambertian diffuse

response. As such, scaling the diffuse model by the BRDF's response in a split-sum

approximation is a reasonably close match to the ground truth:

Cj(ωo) ≈ (
󰁕
Ω
Bi(ωi)dωi)(

󰁕
Ω
fbr(α,ωi,ωo, n, f0, f90)dωi)

In Real Shading in Unreal Engine 4 (2013) [96], Karis showed that a specular BRDF's re-

sponse can be precomputed into a 2D texture parameterised by the roughness value α and

Figure 8.5: The Ambient Dice DFG texture for single-scattering GGX. NdotV increases to
the right and α increases downwards.

NdotV, where NdotV is the cosine of the angle between the surface normal and the view-

ing direction. This texture is known as the DFG texture, and is usually generated through

Monte Carlo integration.

The DFG texture generally comprises of at least two channels, where for every value of

α andNdotV one channel contains the scale for thematerial's f0 and the other the scale for

the material's f90 values. The DFG texture for specular Ambient Dice is shown in Figure

8.5.

Using our earlier observation that the diffuse irradiance may be scaled by the specular

BRDF response at high roughnesses, we can approximate the specular response for high

roughnesses with:

I(ωo) = (f0 ·DFG(α, dot(n,ωo)).x+ f90 ·DFG(α,dot(n,ωo)).y) ·
󰁛

i

biL(ωo) (8.17)

where L is given by Equation 8.14, our polynomial approximation to the diffuse irradi-

ance from an Ambient Dice cosine lobe.

We similarlymultiply the reflectance at low roughnesses by the value stored in theDFG

texture; rather than separately computing the Fresnel response, we can use the precom-

puted value.

Given a solution for each end of the roughness range, the next step is to find an approx-

imate fit for roughness values in the middle of that range. The most immediately obvious

solution is to linearly interpolate between the values for zero and maximum roughness

based on some function t(α), where t(α) is a polynomial. In practice, a second function of

α is also used to blend between the reflection direction and the normal direction as input

for the diffuse fit. The coefficients for the polynomials can be found using a numerical

fitting framework such as MPFIT [97] and are given in Listing 8.1:

Listing 8.1: Ambient Dice Specular Fit

float AmbientDiceCosineBasisFunction(float cosTheta) {
float dotProduct = max(cosTheta, 0.f);
float cos2 = dotProduct * dotProduct;
float cos4 = cos2 * cos2;
return 0.7f * (0.5f * cos2) + 0.3f * (5.f / 6.f * cos4);

}

const float kAmbientDiceParameters[8] = float[8](3.0498910522220495,
-6.983002509990005, 7.388270435580356, -2.662756921813306,
-0.4005429486854629, 5.626699351644211, -6.040098716506305,
1.9006124935607012);

float EvaluateAmbientDiceLobeDiffuse(float cosTheta) {
return 0.06 + 0.129 * cosTheta + 0.0697 * cosTheta * cosTheta;

}

float2 EvaluateAmbientDiceLobeSpecular(float3 lobeDirection, float3
viewDirection, float ggxAlpha, float2 lutValue) {
float NdotLobe = dot(normal, lobeDirection);

float3 reflectionDir = reflect(-viewDirection, normal);
float RdotLobe = dot(reflectionDir, lobeDirection);

float basisInMirrorDir = AmbientDiceCosineBasisFunction(RdotLobe);

float sqrtAlpha = sqrt(ggxAlpha);

float focusLerp = kAmbientDiceParameters[0] * sqrtAlpha +
kAmbientDiceParameters[1] * ggxAlpha + kAmbientDiceParameters[2] *
sqrtAlpha * ggxAlpha + kAmbientDiceParameters[3] * ggxAlpha * ggxAlpha;

float diffuseParam = mix(RdotLobe, NdotLobe, saturate(focusLerp));
float diffuse = EvaluateAmbientDiceLobeDiffuse(diffuseParam);

float alphaLerp = kAmbientDiceParameters[4] * sqrtAlpha +
kAmbientDiceParameters[5] * ggxAlpha + kAmbientDiceParameters[6] *
sqrtAlpha * ggxAlpha + kAmbientDiceParameters[7] * ggxAlpha * ggxAlpha;

float value = mix(basisInMirrorDir, diffuse, saturate(alphaLerp));
return value * lutValue;

}

Applying this simple custom fit yields barely reasonable results; the general intensity

values are approximately correct but the shape of the distribution is obviously incorrect.

After some investigation, it becameapparent that using the split-sumapproximation through-

out the entire range is the main source of error; post-multiplying the result of importance

sampling the basis function according to the BRDF by the BRDF response yields high error

and visual disparity.

Rather than using the split-sum approximation of the BRDF response with the basis

function, we can instead build a separate look-up table based on our simple fit. Instead of

containing the BRDF response, this table should hold the ground truth value for a partic-

ular angle between the surface normal and lobe direction divided by the value our simple

approximation would yield. With this table, an exact solution can be evaluated for that

particular view and lobe direction, with an approximation for all other parameter values.4

When constructing the table, the integral is evaluated in tangent space, with thenormal

set to N = (0, 0, 1). The view direction is given by V = (0, sin(cos−1(NdotV)),NdotV), and

the lobe direction is some blend between the normal direction and the mirror reflection

direction R = (0,− sin(cos−1(NdotV)), NdotV) depending on the roughness.

Listing 8.2 provides the implementation for generating the lookup texture. See Sam-

pling the GGXDistribution of Visible Normals (Heitz 2018) [72] for definitions and/or explana-

tions of the sampleGGXVNDF and SmithGGXMaskingShadowingG2OverG1Reflection functions.

Listing 8.2: Ambient Dice Lookup Texture Generation

// Sampling the GGX Distribution of Visible Normals
// Heitz 2018.
float SmithLambda(float cosThetaM, float alphaG) {

float alphaG2 = alphaG * alphaG;
float cosThetaM2 = cosThetaM * cosThetaM;
float sinThetaM2 = 1.f - cosThetaM2;
return 0.5f * (-1.f + sqrt(1.f + alphaG2 * sinThetaM2 / cosThetaM2));

}

// Sampling the GGX Distribution of Visible Normals
// Heitz 2018.
inline float SmithGGXMaskingShadowingG2OverG1Reflection(float3 incoming,

float3 outgoing, float3 microfacetNormal, float alpha) {
float VdotH = dot(incoming, microfacetNormal);
float LdotH = dot(outgoing, microfacetNormal);

float G1Inverse = 1.f + SmithLambda(incoming.z, alpha);

4Note that NdotV and NdotLobe alone are insufficient to uniquely determine the integrated value; we also
need to know the angle between the view direction and the lobe direction.

float numerator = (VdotH > 0 ? 1.f : 0.f) * (LdotH > 0 ? 1.f : 0.f);
float denominator = G1Inverse + SmithLambda(outgoing.z, alpha);
return numerator / (denominator * G1Inverse);

}

float3 GGXDominantDirection(float3 N, float3 R, float roughness) {
float smoothness = saturate(1.f - roughness);
float lerpFactor = smoothness * (sqrt(smoothness) + roughness);
return normalize(mix(N, R, lerpFactor));

}

float2 IntegrateDFGAmbientDice(float NdotV, float ggxAlpha) {
const float sampleScale = 1.f / float(sampleCount);

const float3 normal = float3(0, 0, 1);

float3 viewDirection = float3(0, sqrt(1.f - NdotV * NdotV), NdotV);
float3 R = reflect(-viewDirection, normal);
float3 lobeDirection = GGXDominantDirection(normal, R, ggxAlpha);

float fittedValue = EvaluateAmbientDiceLobeSpecular(lobeDirection,
viewDirection, ggxAlpha, float2(1.f)).x;

float2 groundTruth = float2(0.0); // for f0 and f90MinusF0
for (uint sampleIt = 0u; sampleIt < sampleCount; sampleIt += 1u) {

float2 sampleUV = Hammersley2D(sampleIt, sampleCount);
float3 H = SampleGGXVNDF(viewDirection, ggxAlpha, ggxAlpha, sampleUV.y,

sampleUV.x);
float3 lightDirectionTangent = reflect(-viewDirection, H);

float Vis = SmithGGXMaskingShadowingG2OverG1Reflection(viewDirection,
lightDirectionTangent, H, ggxAlpha);

float f90MinusF0Weight = pow(1.f - saturate(dot(viewDirection, H)),
5.f);

float2 brdf = float2(1.0 - f90MinusF0Weight, f90MinusF0Weight) * Vis;

if (lightDirectionTangent.z > 0.f) {
float basis = AmbientDiceCosineBasisFunction(dot(lobeDirection,

lightDirectionTangent));
groundTruth += basis * brdf * sampleScale;

}
}

return groundTruth / fittedValue;
}

Results

In practice, this fit works very well, and produces results very close to the ground truth

for high roughnesses. For amore accurate fit, a 3D lookup texture could be used, where the

texture is indexed by the dot product between the normal and lobe directions in addition

to NdotV and α.

I have not yet found a compensation factor for the portion of the BRDF that is clipped

when the basis functions are defined on the hemisphere; however, this is a less significant

issue for specular than for diffuse due to the narrower nature of low tomedium roughness

specular lobes.

Due to the inherent blurring in the Ambient Dice cosine-lobe basis, the specular recon-

struction is only accurate comparedwith the ground truth formoderate to high roughness

values. This is not a limitation of the specular reconstruction technique but rather of the

limited bandwidth allotted to the basis functions, preventing the storing of high-frequency

data.

Comparedwith sphericalGaussians, this fit produces results thatmore accuratelymatch

the ground truth. The Ambient Dice cosine-lobe basis produces more diffused highlights;

however, as a consequence, it does not suffer from the point-light effect that spherical

Gaussians suffer when configured with the high λ values necessary for those tight high-

lights.5 Performance is also significantly better than for spherical Gaussians due to the

much lower ALU overhead, as can be seen in Table 8.1.

A comparisonof theAmbientDice specular reconstruction compared to sphericalGaus-

sians and the ground truth is given in Figure 8.6; note in particular the circular banners,

the hanging vases, and the dark area in the back of the hall. Additionally, a detailed im-

age comparison of reconstruction from Ambient Dice compared to spherical Gaussians is

provided in Appendix C.

8.4.3 Potential Uses

Radiance-encoding cosine-lobe Ambient Dice have the potential to be a new standard

for storing high-quality indirect specular in real-time applications. They are inexpensive

to evaluate, produce diffuse reconstruction that is at worst slightly higher error than L2
5 High-λ spherical Gaussian lobes produce highly localised highlights, meaning that specular reconstruction
from spherical Gaussian lobes often gives the appearance of point light sources rather than a continuous
radiance field; Figure 7.4 shows an example of this.

Table 8.1: Runtime overhead of indirect specular lightmaps.

No lightmaps 1.39ms
Ambient Dice (nine lobes) 2.30ms
Spherical Gaussians (nine lobes) 3.27ms

Times given are from GPU performance queries for rasterising the main view only. Forward
shading was used, with front-to-back sorting to minimise overdraw.

Tests were performed on the Sponza Atrium [5] with a 2048×1862 lightmap. The lightmap was
stored as four 32-bit floats per basis function; timings would likely be lower with a compressed

format.

spherical harmonics and at best approaches L4 spherical harmonics, andproduce specular

reconstruction that is often of higher quality and lower error than spherical Gaussians at

a significantly lower runtime cost.

When used in lightmap baking, cosine-lobe radiance-encoding Ambient Dice are a

higher-quality but higher-cost alternative to L1 spherical harmonics, with the added bonus

of providing indirect specular. However, they also have applicability in place of the lo-

calised cubemaps or baked irradiance volumes in widespread use today. Although the

Ambient Dice require a high number of coefficients (twelve for spherical encoding com-

pared to the nine required by L2 spherical harmonics), the same coefficients are used for

both diffuse and specular. For surfaces with moderate to high roughness values, using

cosine-lobe Ambient Dice removes the need for a cubemap texture fetch to retrieve the

preconvolved specular irradiance.

Localised cubemaps or screen-space reflections will likely continue to be necessary

for high-frequency specular reconstruction with low roughness values. Screen-space re-

flections using baked indirect lighting from cosine-lobe Ambient Dice as a fallback could

potentially be a popular option, providing high visual quality at moderate cost. A compar-

ison of indirect lighting techniques, including the combination of screen-space reflections

with lightmaps, is given in Figure 8.7.

Figure8.6: Indirect lighting frombaked lightmaps in SponzaAtrium [5]with only single-s-
cattering GGXmaterials.

(a) Path-traced reference

(b) Non-negative spherical Gaussians (12 lobes, λ = 8)

(c) Non-negative hemispherical cosine-lobe Ambient Dice (9 lobes)

Figure8.7: Comparison of various real-time indirect lighting techniques. Scene credit The
Baking Lab [18].

(a) Path traced reference

(b) Direct lighting (c) Skybox probe (cubemap specular and L2 SH
diffuse)

(d) Screen-space reflections (e) Skybox probe and screen-space reflections

(a) Path traced reference

(f) Indirect lightmap with 12 spherical Gaussian
lobes

(g) Indirect lightmap with 12 spherical Gaussian
lobes and screen-space reflections

(h) Indirect lightmap with 9 Ambient Dice
cosine-variant lobes

(i) Indirect lightmap with 9 Ambient Dice
cosine-variant lobes and screen-space reflec-
tions

Figure 8.8: Comparison of various real-time indirect lighting techniques: absolute differ-
ence from path-traced reference. Intensities have been increased by 3 EV. Scene credit
The Baking Lab [18].

(a) Direct lighting (b) Skybox probe (cubemap specular and L2 SH
diffuse)

(c) Screen-space reflections (d) Skybox probe and screen-space reflections

(e) Indirect lightmap with 12 spherical Gaussian
lobes

(f) Indirect lightmap with 12 spherical Gaussian
lobes and screen-space reflections

(g) Indirect lightmap with 9 Ambient Dice
cosine-variant lobes

(h) Indirect lightmap with 9 Ambient Dice
cosine-variant lobes and screen-space reflec-
tions

Chapter 9

Conclusion

This thesis has presented an overview of and a number of extensions to the state of the

art in GPU path tracing and interactive lightmap generation, enabling artist-friendly pro-

duction of high-quality global illumination in real-time applications. The stated goals of

the thesis were to present a framework for building a GPU path-tracing lightmapper, to

provide a good user experience by making that lightmapper performant, and to improve

the visual quality of the produced lightmaps; the structures, techniques, and algorithms

presented in this thesis have contributed to each one of these goals, and in combination

form a complete system for path-traced lightmap generation on the GPU.

To recap some of its most notable contributions, this thesis has:

• Presented a detailed and optimised method for packing parameterised meshes into

an atlas and generating samples from that parameterisation on the GPU.

• Described a range of considerations for GPU-based path tracing, including perfor-

mance-quality tradeoffs enabled by integration with an existing rasteriser such as

irradiance caching.

• Introduced a gather-based parallel method of sample accumulation that supports

filtering, allows multiple samples to be taken per pixel in a single batch, and sup-

portsmulti-operationmodifications. In particular, this enables the progressive least-

-squares encoding method.

• Presented a novel method for progressive least-squares encoding of spherical basis

functions, including support for approximate non-negative solves.

153

• Introducedmethods to reconstruct diffuse and specular irradiance fromradiance-en-

coding Ambient Dice using the cosine-lobe variant basis function.

GPUpath-traced lightmaps present an exciting future for the content creation pipeline,

enabling fast iteration and accessible, accurate global illumination. The democratisation

thatGPU-generated lightmaps imply for small and independent content creators –wherein

the process can run interactively on an artist's hardware without requiring an overnight

baking process or separate hardware – is particularly compelling.

As part of this thesis, an efficient implementation has been built that enables interac-

tive lightmap baking for real-time applications. The hope is that the steps and processes

detailed here will be useful for others wishing to do the same, and that those implemen-

tations, in turn, will help to enable the proliferation of incredible, well-illuminated experi-

ences.

9.1 Limitations and FutureWork

This thesis' system does not include a denoising filter, which would improve the ap-

parent convergence rate for artists. The wavelet À-trous filter (Dammertz et. al., 2010) [98]

would be a simple and effective addition and has already seen use in the Frostbite engine's

progressive lightmap baker [4].

Modifications to the lighting conditions or object positions within a scene currently

necessitate restarting the lightmap baking process, while modifications to object sizes

and object addition require re-parameterisation of the lightmap. For localised changes,

an adaptive method could be used to only regenerate the parts of the lightmap that the

scene changes significantly affect; for example, the value of the new lightmap after a few

samples could be compared with the value in the old lightmap, with the samples merged

if the averages are sufficiently close.

Additionally, new, more robust methods to parameterise meshes would remove the re-

mainingmajor hurdle in using lightmaps in content creation. Meshparameterisation, even

when automated, can easily fail and require manual correction if the mesh is non-mani-

fold or has other issues. Techniques such as surfels (Barre-Brisebois et. al.) [1], wherein the

scene surfaces are parameterised in a non-geometry-aware manner, may present a better

workflow for artists.

More attention should be spent on optimising the surface shading kernels for a GPU

path tracer. The high register usage in these kernels yields low occupancy (few thread-

groups in flight) on the GPU hardware, and only moderate effort was made in minimising

divergence within the surface shader. It is likely that highly optimised shading kernels

could greatly outperform the implementation used here.

Building on camera-based lightmap sampling, a useful extension to the interactiveGPU

path tracer may be to focus samples on particular objects within the scene. This could be

implemented as a fairly simple extension of the current adaptive samplingmechanisms by

restricting the sample domain to be only the lightmap UVs contained within the objects of

interest.

Camera-based lightmap sampling also performs useful culling of lightmap geometry

that is invisible from user perspectives. After an artist has fully inspected a scene using

camera-based sampling, only the non-zero texels need to have further samples taken for

the final bake process since those texels with zero samples are invisible to the user. This

could also be used to re-parameterise the lightmap to remove invisible geometry, improv-

ing utilisation.

Irradiance caching is currently implemented using a simple Lambert-shaded direct il-

lumination lightmap. As an extension, the approach proposed by Apers et al. [1] could be

used wherein the converged lightmap texels are used to provide cached indirect illumina-

tion for future path tracing. If these converged lightmap texels were stored as a spherical

basis function, then indirect radiance reconstruction from the irradiance cache would be

possible; particularly interesting is the prospect of a hybrid approach, wherein the cached

indirect radiance is used for rough materials while ray tracing is used for highly glossy

materials, resulting in an accurate final result at reduced computational cost.

The approach for approximating specular from the Ambient Dice cosine-lobe basis

function could see use in approximations for other basis functions, as well as for approx-

imating multi-scattering specular. It could also be interesting to layer higher-frequency

representations; for example, Iwanicki and Sloan suggest a subdivided icosahedron for a

variant of Ambient Dice that can store higher-frequency illumination.

Spherical basis functions whose error is minimised over the hemisphere yield signif-

icantly improved images, yet result in poor BRDF reconstruction when the BRDF hemi-

sphere (centred around the query direction) does not align with the integration hemi-

sphere (which is fixed to the geometric surface normal). Finding better approximations

for BRDF integrals over hemispherical basis functions would yield a significant quality im-

provement at no extra bandwidth cost.

Appendices

157

Appendix A

Validation and PBRT Compatibility

When testing the path tracer, it was useful to have some ground truth reference to vali-

date its output. For my reference, I chose the PBRT renderer [13] due to the availability

of multiple high-quality scenes within its file format and the high-quality documentation

available.

I built a parser that can load scene files from the PBRT scene format into LlamaEngine

(Appendix B.1). A best-effort attempt is made at preserving materials; LlamaEngine sup-

ports only a subset of the material models implemented within PBRT, and in particular

has no support for procedural textures or arbitrary texturemanipulations. In addition, the

layered material models fundamentally differ between PBRT and LlamaEngine; in PBRT's

substratematerial the transmittance from the specular layer through to the diffuse layer

depends upon the Fresnel reflectance at the incident angle, for example, whereas Lla-

maEngine uses a purely additive model.1 Given these limitations, LlamaEngine cannot

precisely match PBRT's output; however, in most cases the rendered image is very similar;

see Figure A.1.

PBRT scenes present a number of challenges when being rendered within a rasteriser.

The vertex normals are frequently inverted, for example, and the coordinate system freely

shifts between being left-handed and right-handed, with face winding varying similarly.

Addressing this was a matter of implementing detection for mismatching face winding

(ensuring that the shading normal is oriented with the geometric normal, and flipping the

winding order if it is not) and manually tweaking scenes file to mitigate the remaining

issues.

1 Note that neither model is physically correct, as is described in Section 6.3.1.

159

In addition, the PBRT scene files are generally sadly unsuitable for lightmapping due

to their high geometric complexity. Parameterising the PBRT scenes can take a number

of hours and the resulting parameterisations have numerous issues that render the final

result unusable. Additionally, many of the meshes in PBRT scenes are non-manifold and

cannot be parameterised.

The path tracer must also be independently validated against the rasteriser since light-

ingmust be consistent between both. In cases where a rasterisermay accurately represent

a scene (i.e. with only punctual and directional lights and simplematerials) a single bounce

of the path tracer is a near-exact match to the rasteriser, with the only differences being in

shadow handling; see Figure A.2.

Figure A.1: 'bathroom' in PBRT and in LlamaEngine. Scene credit 'nacimus' [40].

(a) LlamaEngine GPU render. 4000 samples per pixel at 2400×1520 resolution.
550.9 seconds of render time.

(b) PBRT render. 2048 samples per pixel at 1200×760 resolution. 1878.8 sec-
onds of render time.

The scene has been adjusted to exclude layered materials, which have different models in each
renderer. Texture coordinates are flipped in some cases.

Figure A.2: Comparison of a single-bounce path-traced image with an image from the
rasteriser. Scene credit McGuire [5].

(a) Rasteriser

(b) Path tracer with a single bounce (no indirect)

The images closely match, with the most apparent differences being in shadow handling.

Appendix B

Implementation Frameworks

The techniques described in this thesiswere predominantly implemented and tested in the

3D engine and renderer LlamaEngine, using either AMD's RadeonRays [15] or Apple'sMetal

Performance Shaders [47] libraries for ray intersection. This appendix will provide some

background detail on LlamaEngine, its frame-graph rendering system, and the integration

of that system with RadeonRays and Metal Performance Shaders.

B.1 LlamaEngine

LlamaEngine (so named because of its initial intended role as the engine for the game

Interdimensional Llama) is a 3D, physically-based game enginewritten primarily in the Swift

programming language (Apple Inc., Lattner et. al. 2014). Development initially began in

late 2016 and has been continued since by myself and Joseph Bennett.

Largely due to my familiarity with the code base, I chose LlamaEngine as the core

framework for implementing the GPU-based path tracer and lightmapper. LlamaEngine,

and in particular its renderer, does also have a number of other attractions, including:

• Pervasive use of physically-based units for lighting.

• Use of industry-standard material models: either Lambert diffuse or Disney diffuse

and GGX specular with Smith height-correlated visibility [95].

• The extensible and easy-to-use SwiftFrameGraph (Bennett and Roughton) [14] ren-

dering system built upon the render graph concept. [99]

163

Figure B.1: The LlamaEngine editor

• Forward+ and deferred rasterisation paths using clustered shading [79].

• Support for image-based lights using the split-sum approximation (Karis 2013) [96].

Implementing the path tracer and lightmapper necessitated a range of other changes

to the engine. The asset pipeline was reworked, adding support for optional per-mesh

lightmapUV and chart channels; this reworked asset pipelinewas integrated into themain

codebase of the engine (where previously it had been isolated in a separate tool), enabling

runtime conversion and importing of various file formats. Support for textured materials

was added, enabling more detailed scenes and paving the way for sampling the lightmap

texture; support for normalmapswas added at the same time. Numerous performance im-

provements and optimisations were alsomade, enabling large-scale test scenes approach-

ing in scope the scenes used in offline and high-end real-time rendering.

B.2 RadeonRays and RadeonProRender

Rather than architect and build an entire GPU path tracer from scratch, I decided to

base my implementation on AMD's open-source RadeonRays library and RadeonProRen-

der framework. RadeonRays provides mechanisms to provide a scene description to the

library (consisting ofmeshes and transforms) and thenperform ray intersection andocclu-

sion queries against that scene. More concretely, RadeonRays provides a series ofGPU-op-

timised ray acceleration structures and a set of kernels that can efficiently traverse those

structures. RadeonProRender builds a path tracer on top of RadeonRays, implementing

kernels for primary ray generation, shading, and accumulation among others, along with

the CPU pipeline necessary for submission of those kernels.

Both RadeonRays and RadeonProRender have implementations on top of OpenCL;

RadeonRays also supports Vulkan and Embree (Intel 2012) [100]. Although RadeonRays'

existing OpenCL implementation was unsuitable for integration into LlamaEngine (since

SwiftFrameGraph supports only Metal onmacOS, which was the target development plat-

form), theMetal Shading Language andOpenCL happen to be very similar; in fact, inmany

cases a compatibility header that redefines a few language keywords is all that is needed

to port OpenCL kernels to Metal. As such, the RadeonRays kernels used in LlamaEngine

are mostly unmodified from the original source.

The implementation of the LlamaEngine path tracer differs more significantly from

RadeonProRender. Many of these differences are described in depth in Chapter 3, 5, and

6; however, in general, the porting process for RadeonProRender was more a matter of

copying pieces of functionality rather than directly translating the source code, with the

hope that applying this process would lead to better understanding of how the implemen-

tation works. As such, the CPU implementation of the path tracer within LlamaEngine

bears fairly little resemblance to RadeonProRender, although it does perform roughly the

same steps in roughly the same order.

RadeonRays also requiredmodifications to the CPU source to support integration with

LlamaEngine, brought about by the use of a different underlying API (Metal through Swift-

FrameGraph) and the fact that LlamaEngine is predominantly written in Swift, which can-

not interoperate with C++ except throughC. In cases where Swift codemust call into a C++

library, the solution to this is relatively simple: since Swift can interoperate with C, writing

a C wrapper around the C++ API is sufficient. However, it is slightly more difficult when

C++ code needs to call into Swift code.

RadeonRays is structured with a different backend for each platform (such as OpenCL)

it supports. Generally, a RadeonRays backend translates the RadeonRays calls (whichmay

commonly be commands to bind GPU resources or to dispatch a certain kernel) into com-

mands for the underlying API. The pre-existing backends within RadeonRays are all writ-

ten in C++ and follow an inheritance structure; that is, each backend overrides a number

of virtual methods in a set of concrete subclasses. For use in LlamaEngine, the goal was

to implement a new backend on top of SwiftFrameGraph, which would in turn translate

to Metal calls. Rather than implementing a C API on top of SwiftFrameGraph and build-

ing a RadeonRays backend on top of that, I decided the best path was to implement a

generic function-pointer based backend for RadeonRays, enabling other arbitrary back-

ends to simply provide an implementation for each of the required functions. These func-

tion pointers are filled by Swift code within LlamaEngine.

B.2.1 RadeonRays and Render Graph Resources

SwiftFrameGraph introduces the concept of transient resources, whichhave aone-frame

lifetime and are automatically managed by the SwiftFrameGraph backend. These have

no matching equivalent within RadeonRays; instead, RadeonRays either uses persistent

buffers or dequeuesbuffers frompools for reusebetween frames. When integratingRadeon-

Rays with SwiftFrameGraph, one goal was for RadeonRays to smoothly interoperate with

SwiftFrameGraph's resource system; in effect, this means that transient buffers must be

able to be created within LlamaEngine and passed to RadeonRays, whichmay in turn bind

those buffers during the course of a frame.

To enable this, the RadeonRays function-pointer-based backend has the ability to im-

port references to external resources.1 When those resources are exported to RadeonRays

from within LlamaEngine, a callback is also introduced to delete RadeonRays' references

to those resources at the end of the frame.

However, not every resource is transient; some, such as the ray acceleration data struc-

tures, are owned by RadeonRays and are persistent. These resources can be created by

a call to LlamaEngine's implementation of the createBuffer function by RadeonRays.

When RadeonRays requests that a resource be deleted, the LlamaEngine implementation

checks that RadeonRays owns (was responsible for the creation of) that resource before

disposing it; the dispose callback is called by RadeonRays even for externally-created re-

sources, but in the case of transient FrameGraph resources has no effect.

One final complication is that RadeonRaysmay attemptmodify its persistent resources

while they are in use by the GPU. This occurs when, for example, an object is moved in the

1 The ability to import externally-created buffers already existed within the Vulkan and OpenCL backends.

scene, requiring a rebuild of the ray acceleration structure. To avoid a resource hazard, the

implementation of the FrameGraphwasmodified to trackwhen resources are in use by the

GPU and to block work submission until the GPU has finished accessing those resources.

This is done on a per-frame-submission granularity; each resource tracks which frame it

was most recently read from and written to by the GPU, and then CPU access waits until

it is safe to access the resource (i.e. all GPU writes have finished if the CPU is accessing

the resource as a read, or all GPU reads have finished if the CPU is accessing as a write).

This does introduce a pipeline stall, since the GPU is effectively idle in the time between

the CPU accessing the resource and the CPU submitting a new frame after that access.

However, since these modifications are done infrequently and always in response to user

action, the incurred overhead is minimal and preferable to the extra GPU memory usage

that would be entailed by multiple buffering.

If animation or rapidly-changing scenes were required, it may be worthwhile to use

multiple buffering for the ray acceleration structure, or alternatively to split the scene into

a single-buffered static structure and a multi-buffered dynamic structure that may be up-

dated independently. For lightmap baking, the scene must be static; therefore, only a sin-

gle acceleration structure that is immutable during the baking process is needed.

B.3 Metal Performance Shaders

In June of 2018, Apple added support for GPU-based ray intersection to its Metal Per-

formance Shaders (MPS) framework. At this stage, RadeonRays was already integrated

into LlamaEngine and the core path tracing framework was in place; however, I consid-

ered it worthwhile to integrate the Metal Performance Shaders implementation for sake

of performance comparison. It seemed likely that the implementation would be highly

optimised for both the Metal API's implementation and the specific test hardware.2

In practice, the Metal Performance Shaders implementation is not a clear win over the

RadeonRays kernels in terms of performance; in some cases performance is noticeably

poorer, while in others it holds a significant advantage; Table B.1 demonstrates this on a

range of scenes. It does, however, raise a number of implementation considerations.

2 At the WWDC 2018 conference, Apple demonstrated the Metal Performance Shaders ray intersection ker-
nels on AMD Vega 56 hardware, which is architecturally identical to the Vega Pro 64 used predominantly
for testing.

Table B.1: Timing per frame for RadeonRays vs. Metal Performance Shaders.

Scene RadeonRays MPS
Contemporary Bathroom 101ms 111ms
Crown 403ms 478ms
TheWooden Staircase 205ms 144ms
Modern Hall 106ms 104ms
Sponza Atrium 183ms 199ms

Frame Timings for RadeonRays vs Metal Performance Shaders

Fr
am

e
Ti

m
e

(m
s)

0

100

200

300

400

500

Scene

Contemporary Bathroom Crown The Wooden Staircase Modern Hall Sponza Atrium

RadeonRays MPS

Lower is better. Results were averaged over 1000 frames.
Ray direction sorting is disabled on the RadeonRays implementation.

Scenes can be viewed in Appendix D.

The most broadly relevant of these is the requirement that all vertices be contained

within a single buffer, and in particular that those vertices be pre-transformed and placed

into a flat hierarchy for best performance, as if they all belong to a single mesh. The

API also provides for instanced rendering in a two-level hierarchy for frequently-updated

scenes or sceneswhere thememoryoverheadof duplicating vertices is unacceptable; how-

ever, this instanced rendering path carries significant overhead, and in the case of a static

scene (as lightmap baking necessitates) is best avoided.3 The effect of this is that we lose

the concept of a shape or instance index; instead, all that is provided for us with each in-

tersection is the primitive index, barycentric coordinates, and intersection distance.4 We

therefore need to be able to convert that whole-scene-mesh primitive index into the index

of the mesh within the scene.5

It would be theoretically possible to place all other attributes for all vertices into a sep-

arate, linear buffer, on top of the positions and primitive indices MPS already requires.

However, there is a large amount of per-vertex data that may be accessed within the shad-

ing kernel – surface normals, tangent and bitangents, and texture coordinates, to name a

few – and the cost of duplicating that data for every vertex is significant.

When we generate the position buffer for the full scene – that is, the buffer containing

the transformed positions of every vertex in the scene –, we also generate its index buffer,

copying from each mesh's index buffer. As we add each mesh instance, we can record

its starting index within the full-scene index buffer; for example, one mesh might start at

index 300, which wouldmap to primitive 100 (since all primitives supported are triangles).

From this, we can generate a buffer containing the starting primitive offset for every mesh

in the scene.

Upon receiving an intersection result fromMPS,we can retrieve the primitive index and

use it to binary search within the starting primitive offset buffer, returning the index i of

the last element in that buffer which is at most the primitive index. i is therefore the mesh

instance index, matching the shape ormesh instance index that RadeonRays would return

us; the primitive indexwithin thatmesh instance is givenby subtracting theprimitive offset

buffer's element for i from the primitive index returned by MPS.
3 RadeonRays provides similar options of a flat acceleration structure or a two level hierarchy, although in
RadeonRays' case the differences between the two are hidden for consumers of the API.

4MPS intersections can also carry the instance index; however, this is only relevant when a two-level hierar-
chy is being used.

5 This index is used to index into an argument buffer array containing all meshes in the scene, as is described
in Section B.4.

Alternatively, we can avoid the binary search at the cost of extra memory usage by

instead including a per-primitive stream of mesh indices. The mesh index i is found by

looking up the value in the per-primitive buffer at the whole-scene primitive index; the

whole-scene primitive index is then mapped to the mesh instance primitive index in the

same way as per the binary search method. Using this extra index buffer yields a roughly

2% overall performance improvements in my tests; whether it is worthwhile will therefore

depend on whether the increased memory usage offsets the lower ALU cost and poten-

tially lower bandwidth requirements.6

To abstract over the API differences between MPS and RadeonRays, I implemented a

number of functions within the shader code that map from each API's intersection data

types to a common intermediate. These functions cast from untyped pointers to the API

type, where the API is fixed at compile-time of the shader byway of function constants.7 In

addition, I modified RadeonRays' Ray structure tomatch that required byMPS; this simply

involved changing the layout of some fields.

B.4 Resource Binding

In path tracing it is not known ahead of timewhatmesheswill be intersectedwithwhen

a batch of rays is fired; this is in contrast to rasterisation, where the only resources needed

at the time of a draw call are those associatedwith the current draw. This necessitates hav-

ing the entire scene description – every mesh, with all of its associated textures, skinning

matrices, and vertex streams – available when shading the scene after every ray batch.

This is implemented inLlamaEngine (AppendixB.1) usingMetal's argument buffers (anal-

ogous to Vulkan descriptor sets). Conceptually, an argument buffer is a struct containing

some inline data (the material type or the skinning matrix, for example) and references to

other resources such as buffers or textures. These structs can be placed in an array, where

the array is indexed by the shape or instance index. The scene can therefore be described

as an array of Mesh structs. The Metal shader description of Mesh for LlamaEngine has the

following structure:

6Whenusing an indexbuffer, each threadneeds to fetch twoelements: themesh index and thebaseprimitive
offset for that mesh index. With the binary search, the worst case is log2(meshCount) + 1 fetches, but all
threads will be fetching from the same relatively small region in memory.

7 Function constants (also known as specialisation constants) are lightweight compile-time constants that
can be used to change the behaviour within a shader without incurring runtime costs.

Listing B.1: Metal Shading Language Mesh Description
struct Mesh {

float3x4 meshToWorldTranspose [[id(0)]];
const device float3 *positions;
const device float4 *normalsAndTexCoords; // packed_float3 and then a half2
const device uint *tangentsAndBitangents; // 2 short3Normalized
const device uint *lightmapUVs; // ushort2Normalized
const device uint *lightmapCharts;
const device ushort *indices; // may also be uint* if the mesh has 32-bit

indices
const device ushort *lightmapIndices; // the lightmap-specific index buffer.

const device float4 *lightmapChartScalesAndOffsets;

LightingBRDF lightingBRDF;
IndexType indexType;
IndexType lightmapIndexType;

uint16_t materialIndex;
uint8_t materialTranslucency;

uint8_t hasVertexColours;
uint8_t hasTangentsAndBitangents;

};

The material index indexes into a separate buffer of materials, which in turn contains

references to textures used in those materials.

InMetal Shading Language, pointers within an argument buffer struct are references to

other buffers. Note that use of argument buffers in Metal requires manual residency and

hazard tracking for all resources referenced within the argument buffer; this is performed

automatically by the SwiftFrameGraph framework.

Appendix C

Image Gallery: Reconstruction Error

from Ambient Dice vs. Spherical

Gaussians

This chapter contains a comparison of the Ambient Dice SRBF and spherical Gaussian en-

coding formats on a range of environment maps from Debevec [88] and Vogl [85]. All im-

ages and error metrics were generated using a modified version of the open source Prob-

ulator tool [87].

The images are clipped to the upper hemisphere to represent lightmap use cases. For

radiance and Lambertian irradiance, this means the sample direction (i.e. the surface nor-

mal in the case of the irradiance) is restricted to the upper hemisphere; for GGX specular,

the normal is fixed at (0, 0, 1) and instead the image is parameterised by the viewing direc-

tion.

The encoding methods presented are:

• Monte Carlo Importance Sampling (MCIS): the importance-sampled ground truth.

Heitz's method [72] is used for GGX, while a cosine-weighted hemisphere is sampled

for Lambertian diffuse.

• AD9: Nine Ambient Dice cosine-variant lobes are arranged as described in Section

8.3.1.

• AD12: Twelve Ambient Dice cosine-variant lobes are arranged at the vertices of an

icosahedron.

173

• SG9: Nine spherical Gaussian lobeswith λ =6 are arranged on the upper hemisphere

according to Vogel's sphere [87].

• SG12: Twelve spherical Gaussian lobes with λ = 6 are arranged on the upper hemi-

sphere according to Vogel's sphere [87].

All basis functions are solved to minimise least-squares error over the sphere (rather

than the hemisphere). λ of 6 was used due to its being Probulator's chosen default for

spherical Gaussians.

The custom fits for diffuse and specular presented inSection8.4 areused for cosine-lobe

Ambient Dice. Spherical Gaussians use the anisotropic fit for specular and Hill's fit for dif-

fuse [90, 101].

HDR images are tone-mapped and gamma corrected; therefore, intensities in the im-

ages do not increase linearly but more closely match the perceived intensity. Negative

values are clamped to zero.

The RMSE is the root-mean-squared error, averaged over all colour channels, between

the true intensity value (fromMCIS) and the approximation. Since the least-squares encod-

ing processminimises themean-squared error, the root-mean-squared error is the correct

metric to gauge the accuracy of the fit, and reasonable for determining the BRDF recon-

struction quality.

The RMSE is not normalised in any way; if the RMSE decreases with higher roughness

values the overall intensity is likely decreasing. As such, the RMSE should only be com-

pared between different basis functions for the same BRDF (along rows).

In general, both variants of Ambient Dice present more accurate reconstruction than

spherical Gaussians for rough and diffuse materials, although spherical Gaussians are of-

ten more accurate for low roughness values. Interestingly, AD9 sometimes outperforms

AD12; when this occurs, it is likely because the AD9 lobes are rotated to better align with

the scene light sources.

Figure C.1: Ambient Dice vs. Spherical Gaussian Reconstruction on 'Pisa'

MCIS AD9 AD12 SG9 SG12

Radiance
RMSE 0.297 0.285 0.264 0.235

Lambert
RMSE 0.00755 0.00580 0.0150 0.0138

GGX, α = 0.1
RMSE 0.145 0.133 0.109 0.076

GGX, α = 0.2
RMSE 0.0749 0.0698 0.0542 0.0404

GGX, α = 0.4
RMSE 0.0158 0.0202 0.0353 0.0378

GGX, α = 0.6
RMSE 0.00869 0.0119 0.0388 0.0391

Figure C.2: Ambient Dice vs. Spherical Gaussian Reconstruction on 'Ennis'

MCIS AD9 AD12 SG9 SG12

Radiance
RMSE 5.25 5.83 6.45 5.54

Lambert
RMSE 0.148 0.105 0.327 0.225

GGX, α = 0.1
RMSE 2.17 2.74 2.97 2.34

GGX, α = 0.2
RMSE 0.947 1.37 1.47 1.12

GGX, α = 0.4
RMSE 0.276 0.409 0.566 0.574

GGX, α = 0.6
RMSE 0.130 0.137 0.378 0.466

GGX, α = 0.8
RMSE 0.119 0.091 0.299 0.374

Figure C.3: Ambient Dice vs. Spherical Gaussian Reconstruction on 'Grace'

MCIS AD9 AD12 SG9 SG12

Radiance
RMSE 27.6 27.6 27.7 27.7

Lambert
RMSE 0.0118 0.0130 0.300 0.303

GGX, α = 0.1
RMSE 0.956 0.936 1.22 1.22

GGX, α = 0.2
RMSE 0.395 0.377 0.670 0.671

GGX, α = 0.4
RMSE 0.0809 0.0733 0.316 0.319

GGX, α = 0.6
RMSE 0.0178 0.0170 0.191 0.192

GGX, α = 0.8
RMSE 0.0127 0.0144 0.121 0.122

Figure C.4: Ambient Dice vs. Spherical Gaussian Reconstruction on 'Uffizi'

MCIS AD9 AD12 SG9 SG12

Radiance
RMSE 3.96 4.06 3.67 3.25

Lambert
RMSE 0.0367 0.0397 0.0662 0.0573

GGX, α = 0.1
RMSE 2.01 2.10 1.77 1.41

GGX, α = 0.2
RMSE 1.04 1.10 0.827 0.680

GGX, α = 0.4
RMSE 0.270 0.291 0.411 0.455

GGX, α = 0.6
RMSE 0.0691 0.0735 0.299 0.323

GGX, α = 0.8
RMSE 0.0323 0.0300 0.198 0.207

Figure C.5: Ambient Dice vs. Spherical Gaussian Reconstruction on 'Wells'

MCIS AD9 AD12 SG9 SG12

Radiance
RMSE 0.5574 0.5492 0.5283 0.5210

Lambert
RMSE 0.0110 0.00729 0.0217 0.011408

GGX, α = 0.1
RMSE 0.227 0.219 0.195 0.192

GGX, α = 0.2
RMSE 0.0955 0.0894 0.0848 0.0948

GGX, α = 0.4
RMSE 0.0169 0.0176 0.0574 0.0617

GGX, α = 0.6
RMSE 0.00964 0.0118 0.0537 0.0526

FigureC.6: Comparison graphs of reconstruction error for spherical harmonics, spherical
Gaussians, and cosine-lobe Ambient Dice

Radiance Reconstruction Error

R
M

SE

0

7.5

15

22.5

30

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12 L1 SH L2 SH

Lambertian Di use Reconstruction Error

R
M

SE

0

0.15

0.3

0.45

0.6

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12 L1 SH L2 SH

GGX Specular Reconstruction Error, = 0.1

R
M

SE

0

0.75

1.5

2.25

3

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12

⍺

GGX Specular Reconstruction Error, = 0.2

R
M

SE

0

0.4

0.8

1.2

1.6

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12

⍺

GGX Specular Reconstruction Error, = 0.4

R
M

SE

0

0.15

0.3

0.45

0.6

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12

⍺

GGX Specular Reconstruction Error, = 0.6

R
M

SE

0

0.125

0.25

0.375

0.5

Scene

Ennis Grace Pisa U zi Wells

AD9 AD12 SG9 SG12

⍺

Appendix D

Image Gallery: Test Scenes

This appendix contains reference images for scenes used within this thesis. All images

were rendered within the LlamaEngine (Appendix B.1) path tracer built for this thesis.

Figure D.1: 'Contemporary Bathroom' (Mareck) [40]

181

Figure D.2: 'Crown' (Lubich) [40]

Figure D.3: 'The Wooden Staircase' (Wig42) [5, 59]

Figure D.4: 'Modern Hall' (NewSee2l035) [5, 59]

Figure D.5: 'Sponza Atrium' (Meinl, McGuire) [5]

Bibliography

[1] E. Haines and T. Akenine-Möller, Eds., Ray Tracing Gems. Apress, 2019. [Online].

Available: http://raytracinggems.com

[2] 'NVIDIA Announces RTX Technology: Real Time Ray

Tracing Acceleration for Volta GPUs and Later,' 2018.

[Online]. Available: https://www.anandtech.com/show/12546/

nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-for-volta-gpus-and-later

[3] D. Flatt, 'AMD Radeon Rays Integrated into Unity's GPU Progressive

Lightmapper,' 2018. [Online]. Available: https://blogs.unity3d.com/2018/03/29/

amd-radeon-rays-integrated-into-unitys-gpu-progressive-lightmapper/ (Accessed

2018-06-14).

[4] S. Hillaire, Real-Time Raytracing for Interactive Global Illumina-

tion Workflows in Frostbite. Electronic Arts, 2018, presented

at GDC 2018. [Online]. Available: https://www.ea.com/frostbite/news/

real-time-raytracing-for-interactive-global-illumination-workflows-in-frostbite

[5] M. McGuire. (2017, July) Computer Graphics Archive. [Online]. Available: https:

//casual-effects.com/data (Accessed 2019-01-14).

[6] P.-P. Sloan and A. Silvennoinen, 'Directional lightmap encoding in-

sights,' in SIGGRAPH Asia 2018 Technical Briefs. ACM, 12 2018, pp. 1--3.

doi:10.1145/3283254.3283281

[7] H. Chen and X. Liu, 'Lighting and Material of Halo 3,' in ACM SIGGRAPH 2008

Games, ser. SIGGRAPH '08. New York, NY, USA: ACM, 2008, pp. 1--22.

doi:10.1145/1404435.1404437

187

http://raytracinggems.com
https://www.anandtech.com/show/12546/nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-for-volta-gpus-and-later
https://blogs.unity3d.com/2018/03/29/amd-radeon-rays-integrated-into-unitys-gpu-progressive-lightmapper/
https://www.ea.com/frostbite/news/real-time-raytracing-for-interactive-global-illumination-workflows-in-frostbite
https://casual-effects.com/data
http://dx.doi.org/10.1145/3283254.3283281
http://dx.doi.org/10.1145/1404435.1404437

[8] Precomputed Global Illumination in Frostbite, presented at GDC

2018. [Online]. Available: https://www.gdcvault.com/play/1025434/

Precomputed-Global-Illumination-in

[9] J.Wang, P. Ren,M. Gong, J. Snyder, and B. Guo, 'All-frequency Rendering of Dynamic,

Spatially-varying Reflectance,' ACM Trans. Graph., vol. 28, no. 5, p. 133:1–133:10, Dec.

2009.

[10] D. Neubelt and M. Pettineo, 'Physically Based Shading in Theory and Prac-

tice: Advanced Lighting R&D at Ready At Dawn Studios,' 2017, presented at

SIGGRAPH 2015. [Online]. Available: https://blog.selfshadow.com/publications/

s2015-shading-course/

[11] S. Laine, T. Karras, and T. Aila, 'Megakernels considered harm-

ful,' Proceedings of the 5th High-Performance Graphics Conference on

- HPG 13, 2013. [Online]. Available: https://research.nvidia.com/

publication/megakernels-considered-harmful-wavefront-path-tracing-gpus.

doi:10.1145/2492045.2492060

[12] M. Iwanicki and P.-P. Sloan, 'Ambient Dice,' in Eurographics Symposium on Rendering

- Experimental Ideas & Implementations, 2017.

[13] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: from Theory to

Implementation, 3rd ed. Morgan Kaufmann, 2017.

[14] Roughton, Thomas and Bennett, Joseph, 'SwiftFrameGraph,' 2017. [Online].

Available: https://github.com/troughton/SwiftFrameGraph

[15] 'RadeonRays SDK.' [Online]. Available: https://github.com/

GPUOpen-LibrariesAndSDKs/RadeonRays_SDK (Accessed 2018-05-14).

[16] A. Gareffa, 'PS5 powered by Navi in 2020, AMD making Navi with Sony

input,' Jun 2018. [Online]. Available: https://www.tweaktown.com/articles/8643/

ps5-powered-navi-2020-amd-making-sony-input/index.html

[17] Cyan, 'Myst,' 1993.

https://www.gdcvault.com/play/1025434/Precomputed-Global-Illumination-in
https://blog.selfshadow.com/publications/s2015-shading-course/
https://research.nvidia.com/publication/megakernels-considered-harmful-wavefront-path-tracing-gpus
http://dx.doi.org/10.1145/2492045.2492060
https://github.com/troughton/SwiftFrameGraph
https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK
https://www.tweaktown.com/articles/8643/ps5-powered-navi-2020-amd-making-sony-input/index.html

[18] Pettineo, Matt, 'The Baking Lab.' [Online]. Available: https://github.com/

TheRealMJP/BakingLab (Accessed 2018-10-26).

[19] F. Sanglard, 'Quake 2 Source Code Review,' 2011. [Online]. Available: http:

//fabiensanglard.net/quake2/quake2_software_renderer.php (Accessed 2019-01-13).

[20] id Software, 'Quake,' 1996.

[21] J. Bush, 'Quake Lightmaps,' 2015. [Online]. Available: https://jbush001.github.io/

2015/06/11/quake-lightmaps.html (Accessed 2018-11-08).

[22] M. Iwanicki, 'Lighting technology of The Last of Us,' ACM SIGGRAPH 2013 Talks on -

SIGGRAPH 13, 2013. doi:10.1145/2504459.2504484

[23] I. Castaño. (2010) Hemicube Rendering and Integration. [Online]. Avail-

able: http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/

(Accessed 2018-04-12).

[24] G. Greger, P. Shirley, P. M. Hubbard, and D. P. Greenberg, 'The Irradiance Volume,'

IEEE Comput. Graph. Appl., vol. 18, no. 2, pp. 32--43, Mar. 1998.

[25] N. Tatarchuk, Irradiance Volumes for Games, 2005, presented at GDC 2005. [On-

line]. Available: https://developer.amd.com/wordpress/media/2012/10/Tatarchuk_

Irradiance_Volumes.pdf

[26] J. Cohen, M. Olano, and D. Manocha, 'Appearance-preserving Simplification,'

in Proceedings of the 25th Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH '98. New York, NY, USA: ACM, 1998, p. 115–122.

doi:10.1145/280814.280832

[27] R. Ramamoorthi and P. Hanrahan, 'An efficient representation for irradiance envi-

ronment maps,' Proceedings of the 28th annual conference on Computer graphics and

interactive techniques - SIGGRAPH 01, 2001. doi:10.1145/383259.383317

[28] id Software, 'Quake III Arena,' 1999. [Online]. Available: https://github.com/

id-Software/Quake-III-Arena

https://github.com/TheRealMJP/BakingLab
http://fabiensanglard.net/quake2/quake2_software_renderer.php
https://jbush001.github.io/2015/06/11/quake-lightmaps.html
http://dx.doi.org/10.1145/2504459.2504484
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
https://developer.amd.com/wordpress/media/2012/10/Tatarchuk_Irradiance_Volumes.pdf
http://dx.doi.org/10.1145/280814.280832
http://dx.doi.org/10.1145/383259.383317
https://github.com/id-Software/Quake-III-Arena

[29] D. Lazarov, 'Physically-based lighting in Call of Duty: Black

Ops,' in SIGGRAPH 2011 Course: Advances in Real-Time Render-

ing in Games. [Online]. Available: http://advances.realtimerendering.com/

s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20(Siggraph%202011%

20Advances%20in%20Real-Time%20Rendering%20Course).pptx

[30] J. Wang, M. Gong, J. Snyder, B. Guo, and P. Ren, 'All-Frequency Rendering of

Dynamic, Spatially-Varying Reflectance,' ACM Transactions on Graphics, January

2007. [Online]. Available: https://www.microsoft.com/en-us/research/publication/

all-frequency-rendering-of-dynamic-spatially-varying-reflectance/

[31] Ready at Dawn, 'The Order: 1886,' 2015.

[32] 'Metal Feature Set Tables.' [Online]. Available: https://developer.apple.com/metal/

Metal-Feature-Set-Tables.pdf (Accessed 2019-01-13).

[33] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, 'Modeling the in-

teraction of light between diffuse surfaces,' Proceedings of the 11th annual con-

ference on Computer graphics and interactive techniques - SIGGRAPH 84, 1984.

doi:10.1145/800031.808601

[34] M. F. Cohen and D. P. Greenberg, 'Tutorial: Computer graphics; image synthesis,'

K. I. Joy, C. W. Grant, N. L. Max, and L. Hatfield, Eds. New York, NY,

USA: Computer Science Press, Inc., 1988, ch. The Hemi-cube; a Radiosity

Solution for Complex Environments, pp. 254--263. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=95075.95129

[35] P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert, A. Kensler, S. Friedman,

C. Kilpatrick, C. Ramshaw, M. Bannister, B. Rayner, J. Brouillat, and M. Liani, 'Ren-

derMan: An Advanced Path-Tracing Architecture for Movie Rendering,' ACM Trans.

Graph., vol. 37, no. 3, p. 30:1–30:21, Aug. 2018.

[36] B. Burley, D. Adler, M. J.-Y. Chiang, H. Driskill, R. Habel, P. Kelly, P. Kutz, Y. K. Li, and

D. Teece, 'The Design and Evolution of Disney's Hyperion Renderer,' ACM Transac-

tions on Graphics, vol. 37, no. 3, Aug. 2018. doi:10.1145/3182159

http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20(Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course).pptx
https://www.microsoft.com/en-us/research/publication/all-frequency-rendering-of-dynamic-spatially-varying-reflectance/
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
http://dx.doi.org/10.1145/800031.808601
http://dl.acm.org/citation.cfm?id=95075.95129
http://dx.doi.org/10.1145/3182159

[37] L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovic, A. Wei-

dlich, and J. Meng, 'Manuka: A Batch-Shading Architecture for Spectral Path Tracing

in Movie Production,' ACM Trans. Graph., vol. 37, no. 3, p. 31:1–31:18, Aug. 2018.

[38] M. Lee, B. Green, F. Xie, and E. Tabellion, 'MoonRay: Vectorized Production Path

Tracing,' in Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics,

V. Havran and K. Vaiyanathan, Eds. ACM, 2017. doi:10.1145/3105762.3105768

[39] J. M. Hammersley and D. C. Handscomb,Monte Carlo Methods. Methuen, 1964.

[40] W. J. Matt Pharr and G. Humphreys, 'Scenes for pbrt-v3.' [Online]. Available:

https://pbrt.org/scenes-v3.html (Accessed 2019-01-02).

[41] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, 'Ray Tracing on Programmable

Graphics Hardware,' in ACM SIGGRAPH 2005 Courses, ser. SIGGRAPH '05. New

York, NY, USA: ACM, 2005. doi:10.1145/1198555.1198798

[42] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister,

M. McGuire, K. Morley, A. Robison, and M. Stich, 'OptiX: A General Purpose Ray

Tracing Engine,' ACM Transactions on Graphics, August 2010.

[43] 'Radeon ProRender.' [Online]. Available: https://github.com/

GPUOpen-LibrariesAndSDKs/RadeonProRender-Baikal (Accessed 2018-05-14).

[44] 'Introduction to the NVIDIA Turing Architecture.' [Online]. Available:

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/

technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

(Accessed 2018-04-25).

[45] M. Sandy, 'Announcing Microsoft DirectX Raytracing!' 2018.

[Online]. Available: https://blogs.msdn.microsoft.com/directx/2018/03/19/

announcing-microsoft-directx-raytracing/ (Accessed 2018-04-09).

[46] N. Subtil, 'NVIDIA RTX: Enabling Ray Tracing in Vulkan,' ser. NVIDIA GPU Technol-

ogy Conference, 2018. [Online]. Available: http://on-demand.gputechconf.com/gtc/

2018/presentation/s8521-advanced-graphics-extensions-for-vulkan.pdf (Accessed

2018-10-12).

http://dx.doi.org/10.1145/3105762.3105768
https://pbrt.org/scenes-v3.html
http://dx.doi.org/10.1145/1198555.1198798
https://github.com/GPUOpen-LibrariesAndSDKs/RadeonProRender-Baikal
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
http://on-demand.gputechconf.com/gtc/2018/presentation/s8521-advanced-graphics-extensions-for-vulkan.pdf

[47] 'Metal for Accelerating Ray Tracing,' 2018. [Online]. Avail-

able: https://developer.apple.com/documentation/metalperformanceshaders/

metal_for_accelerating_ray_tracing

[48] 'Real-Time Ray-Tracing Techniques for Integration into Existing Render-

ers,' presented at GDC 2018. [Online]. Available: https://gpuopen.com/

gdc-2018-presentation-real-time-ray-tracing-techniques-integration-existing-renderers/

[49] 'Metal Shading Language Specification.' [Online]. Available: https://developer.

apple.com/metal/Metal-Shading-Language-Specification.pdf

[50] 'White Paper | AMD Graphics Cores Next (GCN) Architecture.' [Online]. Avail-

able: https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf (Ac-

cessed 2019-01-03).

[51] S. Aaltonen, 'Optimizing GPU occupancy and resource usage with

large thread groups,' 2017. [Online]. Available: https://gpuopen.

com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/ (Accessed

2018-08-12).

[52] J. Novák, V. Havran, and C. Daschbacher, 'Path Regeneration for Interactive Path

Tracing.' Eurographics Association, 2010, p. 61–64.

[53] I. Wald, 'Active Thread Compaction for GPU Path Tracing,' in Proceedings of the ACM

SIGGRAPH Symposium on High Performance Graphics, ser. HPG '11. New York, NY,

USA: ACM, 2011, p. 51–58. doi:10.1145/2018323.2018331

[54] J. Reinders, 'Intel® AVX-512 Instructions,' 2017. [Online]. Available: https://software.

intel.com/en-us/blogs/2013/avx-512-instructions (Accessed 2018-08-12).

[55] S. Baxter, 'Mergesort,' 2013. [Online]. Available: https://moderngpu.github.io/

mergesort.html (Accessed 2018-05-03).

[56] T. Harada and L. Howes, 'Introduction to GPU Radix Sort,' 2011. [On-

line]. Available: http://www.heterogeneouscompute.org/wordpress/wp-content/

uploads/2011/06/RadixSort.pdf (Accessed 2018-10-05).

https://developer.apple.com/documentation/metalperformanceshaders/metal_for_accelerating_ray_tracing
https://gpuopen.com/gdc-2018-presentation-real-time-ray-tracing-techniques-integration-existing-renderers/
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
http://dx.doi.org/10.1145/2018323.2018331
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://moderngpu.github.io/mergesort.html
http://www.heterogeneouscompute.org/wordpress/wp-content/uploads/2011/06/RadixSort.pdf

[57] B. P. Welford, 'Note on a Method for Calculating Corrected Sums of Squares

and Products,' Technometrics, vol. 4, no. 3, p. 419–420, 1962. [Online]. Available:

http://www.jstor.org/stable/1266577

[58] Apple Inc., 'MPSRayIntersector Documentation,' macOS 10.14 SDK.

[59] B. Bitterli, 'Rendering resources,' 2016, https://benedikt-bitterli.me/resources/. (Ac-

cessed 2019-01-14).

[60] LuxCoreRender Project, 'Luxrender.' [Online]. Available: https://luxcorerender.org

(Accessed 2018-11-03).

[61] M. E. Lee, R. A. Redner, and S. P. Uselton, 'Statistically Optimized Sampling for Dis-

tributed Ray Tracing,' in Proceedings of the 12th Annual Conference onComputerGraph-

ics and Interactive Techniques, ser. SIGGRAPH '85. New York, NY, USA: ACM, 1985,

p. 61–68. doi:10.1145/325334.325179

[62] D. Kirk and J. Arvo, 'Unbiased Sampling Techniques for Image Synthesis,' in Proceed-

ings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH '91. New York, NY, USA: ACM, 1991, p. 153–156. doi:10.1145/122718.122735

[63] D. P. Mitchell, 'Generating Antialiased Images at Low Sampling Densities,' SIG-

GRAPH Comput. Graph., vol. 21, no. 4, p. 65–72, Aug. 1987.

[64] B. Karis, 'High Quality Temporal Supersampling,' in ACM SIGGRAPH 2014: Advances

in Real-Time Rendering in Games, ser. SIGGRAPH ’14. ACM, 2014. [Online]. Available:

http://advances.realtimerendering.com/s2014/index.html

[65] 'TheklaAtlas.' [Online]. Available: https://github.com/Thekla/thekla_atlas (Accessed

2018-06-14).

[66] VoidStar, 'Find nth set bit in an int,' Oct 2011. [Online]. Available:

https://stackoverflow.com/questions/7669057/find-nth-set-bit-in-an-int (Accessed

2018-07-04).

[67] S. G. Chang and G. S. Yovanof, 'A simple block-based lossless image compression

scheme,' in Conference Record of The Thirtieth Asilomar Conference on Signals, Systems

and Computers, vol. 1, Nov 1996, pp. 591--595 vol.1. doi:10.1109/ACSSC.1996.601093

http://www.jstor.org/stable/1266577
https://luxcorerender.org
http://dx.doi.org/10.1145/325334.325179
http://dx.doi.org/10.1145/122718.122735
http://advances.realtimerendering.com/s2014/index.html
https://github.com/Thekla/thekla_atlas
https://stackoverflow.com/questions/7669057/find-nth-set-bit-in-an-int
http://dx.doi.org/10.1109/ACSSC.1996.601093

[68] J.-H. Nah, Y.-H. Jung, W.-C. Park, and T.-D. Han, 'Efficient ray sorting for the tracing

of incoherent rays,' IEICE Electronics Express, vol. 9, no. 9, p. 849–854, 2012.

[69] P. Christensen, A. Kensler, and C. Kilpatrick, 'Progressive Multi-Jittered Sample Se-

quences,' Computer Graphics Forum, vol. 37, no. 4, p. 21–33, 2018.

[70] A. Kensler, 'Correlated multi-jittered sampling,' Pixar Technical Memos, vol. 13-01, 03

2013. [Online]. Available: https://graphics.pixar.com/library/MultiJitteredSampling/

paper.pdf

[71] I. Sobol', 'On the distribution of points in a cube and the approximate evaluation of

integrals,' USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,

pp. 86 -- 112, 1967. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0041555367901449

[72] E. Heitz, 'Sampling the GGX Distribution of Visible Normals,' Journal of Computer

Graphics Techniques (JCGT), vol. 7, no. 4, p. 1–13, November 2018. [Online]. Available:

http://jcgt.org/published/0007/04/01/

[73] A.Weidlich andA.Wilkie, 'Arbitrarily layeredmicro-facet surfaces,' Proceedings of the

5th international conference on Computer graphics and interactive techniques in Australia

and Southeast Asia - GRAPHITE 07, 2007. doi:10.1145/1321261.1321292

[74] W. Jakob, E. Deon, O. Jakob, and S. Marschner, 'A comprehensive framework for ren-

dering layered materials,' ACM Transactions on Graphics, vol. 33, no. 4, p. 1–14, 2014.

[75] P. Vévoda and J. Křivánek, 'Adaptive Direct Illumination Sampling,' in SIGGRAPH

ASIA 2016 Posters, ser. SA '16. New York, NY, USA: ACM, 2016, p. 43:1–43:2.

doi:10.1145/3005274.3005283

[76] A. C. Estevez and C. Kulla, 'Importance Sampling of Many Lights with Adaptive Tree

Splitting,' in ACM SIGGRAPH 2017 Talks, ser. SIGGRAPH '17. New York, NY, USA:

ACM, 2017, p. 33:1–33:2. doi:10.1145/3084363.3085028

[77] E. Veach and L. J. Guibas, 'Optimally Combining Sampling Techniques for Monte

Carlo Rendering,' in Proceedings of the 22Nd Annual Conference on Computer Graphics

and Interactive Techniques, ser. SIGGRAPH '95. New York, NY, USA: ACM, 1995, p.

419–428. doi:10.1145/218380.218498

https://graphics.pixar.com/library/MultiJitteredSampling/paper.pdf
http://www.sciencedirect.com/science/article/pii/0041555367901449
http://jcgt.org/published/0007/04/01/
http://dx.doi.org/10.1145/1321261.1321292
http://dx.doi.org/10.1145/3005274.3005283
http://dx.doi.org/10.1145/3084363.3085028
http://dx.doi.org/10.1145/218380.218498

[78] E. Persson, 'Practical Clustered Shading,' 2013, presented at SIGGRAPH 2013.

[79] O. Olsson, M. Billeter, and U. Assarsson, 'Clustered Deferred and Forward Shading,'

in Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Per-

formance Graphics, ser. EGGH-HPG'12. Goslar Germany, Germany: Eurographics

Association, 2012, p. 87–96. doi:10.2312/EGGH/HPG12/087-096

[80] Y. O'Donnell andM. G. Chajdas, 'Tiled light trees,' in Proceedings of the 21st ACM SIG-

GRAPH Symposium on Interactive 3D Graphics and Games, ser. I3D '17. New York, NY,

USA: ACM, 2017, pp. 1:1--1:7. doi:10.1145/3023368.3023376

[81] E. Heitz, S. Hill, and M. McGuire, 'Combining analytic direct illumination and

stochastic shadows,' in ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games, May 2018, p. 10, i3D 2018. [Online]. Available: http://www.casual-effects.

com/research/Heitz2018Shadow/index.html

[82] G. J. Ward, R. D. Clear, and F. Rubinstein, 'A Ray Tracing Solution for

Diffuse Interreflection,' ACM Computer Graphics, vol. 22, no. 4, Aug 1998.

doi:ACM-0-89791-275-6/88/008/0085

[83] J. Křivánek, P. Gautron, G. Ward, O. Arikan, and H. W. Jensen, 'Practical

global illumination with irradiance caching,' ACM SIGGRAPH 2007 courses, 2007.

doi:10.1145/1281500.1281617

[84] J. Křivánek, P. Gautron, S. Pattanaik, and K. Bouatouch, 'Radiance caching

for efficient global illumination computation,' in ACM SIGGRAPH 2008

Classes, ser. SIGGRAPH '08. New York, NY, USA: ACM, 2008, p. 75:1–75:19.

doi:10.1145/1401132.1401228

[85] B. Vogl, 'Light Probes,' September 2010. [Online]. Available: http://dativ.at/

lightprobes/ (Accessed 2018-07-15).

[86] T. Roughton, 'Spherical Gaussian Encoding,' 2018. [Online]. Avail-

able: http://torust.me/rendering/irradiance-caching/spherical-gaussians/2018/09/

21/spherical-gaussians.html (Accessed 2018-09-21).

[87] Y. O'Donnell, 'Probulator.' [Online]. Available: https://github.com/kayru/Probulator

(Accessed 2018-10-26).

http://dx.doi.org/10.2312/EGGH/HPG12/087-096
http://dx.doi.org/10.1145/3023368.3023376
http://www.casual-effects.com/research/Heitz2018Shadow/index.html
http://dx.doi.org/ACM-0-89791-275-6/88/008/0085
http://dx.doi.org/10.1145/1281500.1281617
http://dx.doi.org/10.1145/1401132.1401228
http://dativ.at/lightprobes/
http://torust.me/rendering/irradiance-caching/spherical-gaussians/2018/09/21/spherical-gaussians.html
https://github.com/kayru/Probulator

[88] P. Debevec, 'Rendering Synthetic Objects into Real Scenes: Bridging Traditional and

Image-based Graphics with Global Illumination and High Dynamic Range Photog-

raphy,' in Proceedings of the 25th Annual Conference on Computer Graphics and Interac-

tive Techniques, ser. SIGGRAPH '98. New York, NY, USA: ACM, 1998, pp. 189--198.

doi:10.1145/280814.280864

[89] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, 'Microfacet Models for Refrac-

tion Through Rough Surfaces,' in Proceedings of the 18th Eurographics Conference on

Rendering Techniques, ser. EGSR'07. Aire-la-Ville, Switzerland, Switzerland: Euro-

graphics Association, 2007, p. 195–206. doi:10.2312/EGWR/EGSR07/195-206

[90] K. Xu, W.-L. Sun, Z. Dong, D.-Y. Zhao, R.-D. Wu, and S.-M. Hu, 'Anisotropic Spherical

Gaussians,' ACM Transactions on Graphics, vol. 32, no. 6, p. 209:1–209:11, 2013.

[91] S. Hill. [Online]. Available: https://mynameismjp.wordpress.com/2016/10/09/

sg-series-part-3-diffuse-lighting-from-an-sg-light-source/ (Accessed 2018-08-13).

[92] J. Arvo, 'Applications of Irradiance Tensors to the Simulation of non-Lambertian

Phenomena,' in Proceedings of the 22Nd Annual Conference on Computer Graphics and

Interactive Techniques, ser. SIGGRAPH '95. New York, NY, USA: ACM, 1995, pp.

335--342. doi:10.1145/218380.218467

[93] L. Belcour, G. Xie, C. Hery, M. Meyer, W. Jarosz, and D. Nowrouzezahrai, 'Integrat-

ing Clipped Spherical Harmonics Expansions,' ACM Trans. Graph., vol. 37, no. 2, pp.

19:1--19:12, Mar. 2018.

[94] Mathworks, 'MATLAB.' [Online]. Available: https://mathworks.com/products/

matlab.html (Accessed 2018-12-18).

[95] E. Heitz, 'Understanding the masking-shadowing function in microfacet-based

brdfs,' Journal of Computer Graphics Techniques (JCGT), vol. 3, no. 2, p. 48–107, June

2014. [Online]. Available: http://jcgt.org/published/0003/02/03/

[96] B. Karis, 'Real Shading in Unreal Engine 4,' in ACMSIGGRAPH 2013 Courses, ser. SIG-

GRAPH ’13. ACM, 2013, p. 22:1–22:8. doi:10.1145/3084363.3085028

[97] C. B. Markwardt, 'Non-linear Least-squares Fitting in IDL with MPFIT,' in Astronom-

ical Data Analysis Software and Systems XVIII, ser. Astronomical Society of the Pacific

http://dx.doi.org/10.1145/280814.280864
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
https://mynameismjp.wordpress.com/2016/10/09/sg-series-part-3-diffuse-lighting-from-an-sg-light-source/
http://dx.doi.org/10.1145/218380.218467
https://mathworks.com/products/matlab.html
http://jcgt.org/published/0003/02/03/
http://dx.doi.org/10.1145/3084363.3085028

Conference Series, D. A. Bohlender, D. Durand, and P. Dowler, Eds., vol. 411, Sep.

2009, p. 251.

[98] H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch, 'Edge-avoiding À-Trous

Wavelet Transform for Fast Global Illumination Filtering,' in Proceedings of the

Conference on High Performance Graphics, ser. HPG '10. Aire-la-Ville, Switzerland,

Switzerland: Eurographics Association, 2010, pp. 67--75. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1921479.1921491

[99] Y. O'Donnell, FrameGraph: Extensible Rendering Architecture in Frostbite, 2017,

presented at GDC 2017. [Online]. Available: https://www.ea.com/frostbite/news/

framegraph-extensible-rendering-architecture-in-frostbite

[100] Intel Corporation, 'Embree.' [Online]. Available: https://embree.github.io (Accessed

2018-04-14).

[101] M. J. Pettineo, 'SG Series Part 5: Approximating Radiance and Irradiancewith Spher-

ical Gaussians,' 2016. [Online]. Available: https://mynameismjp.wordpress.com/

2016/10/09/sg-series-part-5-approximating-radiance-and-irradiance-with-sgs/

(Accessed 2018-04-10).

[102] C. Barré-Brisebois, 'A Certain Slant of Light: Past, Present and Future Challenges

of Global Illumination in Games,' 2017, presented at SIGGRAPH 2017. [Online].

Available: http://openproblems.realtimerendering.com/s2017/index.html

[103] A. Silvennoinen and J. Lehtinen, 'Real-time global illumination by precomputed local

reconstruction from sparse radiance probes,' ACM Transactions on Graphics, vol. 36,

no. 6, 2017. doi:10.1145/3130800.3130852

[104] S. Ravichandran and P. J. Narayanan, 'Coherent and importance sampled LVC BDPT

on the GPU,' SIGGRAPH ASIA 2015, 2015. doi:10.1145/2820903.2820913

[105] C. Schied, M. Salvi, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya,

J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and et al., 'Spatiotemporal vari-

ance-guided filtering,' Proceedings of High Performance Graphics on - HPG 17, 2017.

doi:10.1145/3105762.3105770

http://dl.acm.org/citation.cfm?id=1921479.1921491
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite
https://embree.github.io
https://mynameismjp.wordpress.com/2016/10/09/sg-series-part-5-approximating-radiance-and-irradiance-with-sgs/
http://openproblems.realtimerendering.com/s2017/index.html
http://dx.doi.org/10.1145/3130800.3130852
http://dx.doi.org/10.1145/2820903.2820913
http://dx.doi.org/10.1145/3105762.3105770

[106] T.Müller,M.Gross, and J. Novák, 'Practical PathGuiding for Efficient Light-Transport

Simulation,' Computer Graphics Forum, vol. 36, no. 4, p. 91–100, 2017.

[107] E. Veach and L. J. Guibas, 'Optimally combining sampling techniques for Monte

Carlo rendering,' Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques - SIGGRAPH 95, 1995. doi:10.1145/218380.218498

[108] M. W. Mara, M. McGuire, B. Bitterli, andW. Jarosz, 'An efficient denoising algorithm

for global illumination,' in High Performance Graphics, 2017.

[109] T. Davidovic, J. Křivánek, M. Hašan, and P. Slusallek, 'Progressive Light Transport

Simulation on the GPU: Survey and Improvements,' ACMTrans. Graph., vol. 33, no. 3,

p. 29:1–29:19, Jun. 2014.

[110] P.-P. Sloan. [Online]. Available: https://twitter.com/PeterPikeSloan/status/

1044482721223856128 (Accessed 2018-09-25).

[111] S. Lagarde and C. de Rousiers, 'Moving Frostbite to Physically Based Rendering,'

in Proceedings of the 41st Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH 2014. Vancouver, Canada: ACM, 2014. [Online].

Available: https://www.ea.com/frostbite/news/moving-frostbite-to-pb

[112] C. Kulla, A. Conty, C. Stein, and L. Gritz, 'Sony Pictures Imageworks Arnold,' ACM

Trans. Graph., vol. 37, no. 3, p. 29:1–29:18, Aug. 2018.

[113] I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. V. Lom-

mel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant,

and M. Fajardo, 'Arnold: A Brute-Force Production Path Tracer,' ACM Trans. Graph.,

vol. 37, no. 3, p. 32:1–32:12, Aug. 2018.

[114] P. Lecocq, A. Dufay, G. Sourimant, and J. Marvie, 'Analytic Approximations for Real--

Time Area Light Shading,' IEEE Transactions on Visualization and Computer Graphics,

vol. 23, no. 5, pp. 1428--1441, May 2017.

[115] D. Dunbar and G. Humphreys, 'A spatial data structure for fast Poisson-disk sample

generation,' ACM Trans. Graph., vol. 25, pp. 503--508, 07 2006.

http://dx.doi.org/10.1145/218380.218498
https://twitter.com/PeterPikeSloan/status/1044482721223856128
https://www.ea.com/frostbite/news/moving-frostbite-to-pb

[116] O. Olsson, E. Persson, andM. Billeter, 'Real-timeMany-lightManagement and Shad-

ows with Clustered Shading,' in ACM SIGGRAPH 2015 Courses, ser. SIGGRAPH '15.

New York, NY, USA: ACM, 2015, pp. 12:1--12:398. doi:10.1145/2776880.2792712

[117] B. He, N. Govindaraju, Q. Luo, and B. Smith, 'Efficient gather

and scatter operations on graphics processors,' November 2007.

[Online]. Available: https://www.microsoft.com/en-us/research/publication/

efficient-gather-and-scatter-operations-on-graphics-processors/

[118] Z. Lai, Q. Luo, and X. Jia, 'Revisiting Multi-pass Scatter and Gather on GPUs,' in

Proceedings of the 47th International Conference on Parallel Processing, ser. ICPP 2018.

New York, NY, USA: ACM, 2018, pp. 25:1--25:11. doi:10.1145/3225058.3225095

http://dx.doi.org/10.1145/2776880.2792712
https://www.microsoft.com/en-us/research/publication/efficient-gather-and-scatter-operations-on-graphics-processors/
http://dx.doi.org/10.1145/3225058.3225095

